Prepared by: Proctor Engineering Group, Ltd. San Rafael, CA 94901 (415) 451-2480

Assessment of HVAC Installations in New Homes in Nevada Power Company's Service Territory

Prepared for: Electric Power Research Institute Nevada Power Company Nevada State Energy Office

> Final Report October 1995

Principal Investigators: M. Blasnik J. Proctor T. Downey J. Sundal G. Peterson

REPORT SUMMARY

Assessment of HVAC Installations in New Homes in Nevada Power Company's Service Territory

In residential air conditioning systems, duct leakage, low duct insulation levels, and insufficient air flow across the indoor coil can result in significantly reduced efficiency. This project investigates opportunities for enhancing the performance of air conditioning systems and recommends a package of moderate cost improvements leading to lower energy usage and demand and greater occupant comfort.

INTEREST CATEGORIES

Building systems and analysis tools HVAC Home automation and energy

KEYWORDS

Air conditioning Heat transfer Air infiltration Ducts Ventilation Peak loads **BACKGROUND** In 1991, more than 950 billion kWh of electricity were used in the residential sector, 25% of which involved space heating and cooling. Estimated energy losses of 25—30% occur as a result of improper installation practices and deficiencies in air conditioning systems and ancillary devices. These estimated annual losses exceed 30 billion kWh, valued at more than \$2.5 billion, with peak electricity demands due to duct leakage rising as high as 2 kW in hot, humid climates and 1 kW in less extreme climates. A better understanding of the issues, possible remedies, cost ramifications of improvements, and the potential energy and peak demand savings is important to electric utilities in their demand-side planning process. This project was cosponsored by EPRI, the Nevada Power Company, and the Nevada State Energy Office.

OBJECTIVES To assess the present state of air conditioning systems in new residential construction in the Las Vegas area; to suggest improvements that would lead to cost-effective energy savings and a reduction in peak demand.

APPROACH Investigators first field tested air conditioning units, duct systems, and building shells of a sample of newly built houses in Nevada Power Company's service territory. They next identified typical problems with current heating, ventilation, and air conditioning (HVAC) installation practices. Finally, they performed an engineering and cost analysis to determine the energy savings and peak demand reductions achievable from an HVAC efficiency program targeted at residential customers in Nevada Power's service territory.

RESULTS New residential construction in Nevada Power's service territory showed evidence of considerable deficiencies with respect to air conditioning systems, not unlike other parts of the United States. Research has demonstrated that cost-effective improvements can enhance energy savings and reduce peak demand, while ensuring occupant comfort and satisfaction. This report provides a framework for utilities to follow in creating an efficient HVAC program along with energy savings and cost estimates associated with each remedial measure. Overall, the study showed that:

• Duct leakage and low duct insulation levels cause an average loss of 37% in overall cooling efficiency. Reasonable improvements can reduce this by approximately half, at an estimated cost of \$235 per house. • Air conditioners often have insufficient air flow across the indoor coils and are frequently undercharged due to improper installation procedures, resulting in approximately 12% efficiency penalties. If manufacturer suggested installation practices are followed and testing is performed to ensure proper installation, the problem can be remedied for approximately \$68 per house.

• A program that ensures tight, well-insulated duct systems along with properly installed air conditioners can reduce cooling usage by approximately 47% and peak demand by 1.2 kW. In addition, these modifications can reduce the specified size of installed systems, potentially leading to an additional 0.4 kW demand savings. The cost to implement these improvements and achieve these savings is estimated to be \$650 per unit.

EPRI PERSPECTIVE Typically, air conditioning systems in residential new construction have some deficiencies that negatively impact energy and peak demand. Utilities can improve the efficiency of these air conditioning systems by developing an effective HVAC program that will address deficiencies in current practices. While the program described in this report was specifically designed for Nevada Power, it can be used as a model and customized by other utilities. Related EPRI work describes the New Construction HVAC Program Implementation Plan for Nevada Power Company (TR-105310).

PROJECT

WO3841-03 Project Manager: S. Kondepudi Residential Unit, Customer Systems Group Contractor: Proctor Engineering Group

EPRI Members: For ordering information about this report, call the EPRI Distribution Center (510) 934-4212.

For membership information, call (415) 855-2514.

Assessment of HVAC Installations in New Homes in Nevada Power Company's Service Territory

TR-105309 Research Project 3841-03

Final Report, October 1995

Prepared by PROCTOR ENGINEERING GROUP 818 5th Avenue, #208 San Rafael, California 94901

Principal Investigators M. Blasnik J. Proctor T. Downey J. Sundal G. Peterson

Prepared for Electric Power Research Institute 3412 Hillview Avenue Palo Alto, California 94304

Nevada Power Company 6226 West Sahara Avenue

Las Vegas, Nevada 89151

Nevada State Energy Office Department of Business and Energy 105 East William, #401 Carson City, Nevada 89710

EPRI Project Manager S. Kondepudi

Residential Unit Customer Systems Group

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

THIS REPORT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) NAMED BELOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM:

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS REPORT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (III) THAT THIS REPORT IS SUITABLE TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR

(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS REPORT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS REPORT.

ORGANIZATION(S) THAT PREPARED THIS REPORT: PROCTOR ENGINEERING GROUP

ORDERING INFORMATION

Requests for copies of this report should be directed to the EPRI Distribution Center, 207 Coggins Drive, P.O. Box 23205, Pleasant Hill, CA 94523, (510) 934-4212.

Electric Power Research Institute and EPRI are registered service marks of Electric Power Research Institute, Inc.

Copyright © 1995 Electric Power Research Institute, Inc. All rights reserved.

ABSTRACT

In 1994, Proctor Engineering Group investigated opportunities for improving air conditioning system performance in new residential construction. This investigation, sponsored by Nevada Power Company, the Electric Power Research Institute, and the Nevada State Energy Office, involved field testing air conditioning units, duct systems, and building shells in 30 houses; assessing achievable improvements to the systems; and analyzing the potential energy savings and peak demand reductions from such improvements. The investigation found substantial deficiencies in air conditioning systems. Duct leakage and existing duct insulation levels cause an average capacity loss of 37%. Air conditioners often had insufficient air flow across the indoor coil and were frequently overcharged, leading to a 12% average efficiency loss. A package of moderate cost improvements was recommended that would lower energy usage and demand with improved occupant comfort and satisfaction.

CONTENTS

Sectio	n Page
1	Background1-1
	Prior Research1-1
2	Field Investigation
	Field Data Collection Protocol 2-1
	Implementation2-1
	Findings - General Characteristics 2-3
	Findings - Duct Systems2-3
	Findings - Air Conditioning Systems 2-7
	Air Handler Flow Rate 2-8
	Checking Refrigerant Charge 2-10
	Refrigerant Charge 2-13
	Air Conditioner Sizing2-15
	Summary of Field Findings 2-15
3	Achievable Improvements and Their Costs
4	Modeling Impacts on Usage & Peak Demand4-1
	Air Conditioner Performance Modeling
	Duct Efficiency Modeling
	Energy Usage Modeling
	Peak Demand Modeling (Model P)4-3
	Summary of Model Inputs
	Modeling Results - Baseline Conditions 4-6
	Notes on the Comprehensive Model4-8
5	Conclusions and Recommendations
	Conclusions
	Recommendations
Refere	encesR-1
Gloss	aryGL-1
Apper	ndixes
Α	Summary of Related StudiesA-1
В	Combined Model and Data SourcesB-1

С	Combined Model Interactions	C-1
D	Sample Variability and Overall Uncertainty	D-1
Ε	Estimated Program Impacts and Costs	E-1
F	Air Conditioner Testing Procedure Forms	F-1
G	Duct Testing Procedure Forms	G-1
Η	Manual J Forms	H-1

FIGURES

Figure

Page

2-1	Total Duct Leakage	2-5
2-2	Duct Leakage to the Exterior	
2-3	Supply and Return Leakage as a Percentage of Flow	
2-4	Air Handler Flow	2-9
2-5	Air Flow vs. Static Pressure by Contractor	2-10
2-6	Superheat Charging Chart	2-12
2-7	EER vs. Charge and Outdoor Temperature (capillary tube system)	2-13
4-1	Model P Classes from Submetered Samples	4-4
B-1	Combined Model Schematic	B-1
B-2	Incidence of Model P Classes	B-3
B-3	Connected Load by Model P Class	B-4
B-4	Duty Cycle of Submetered Sample and Underlying Duty Cycle	B-5
C-1	Distribution Loss for Average Unit	C-2
C-2	Effect of Outdoor Temperature on Duct Loss Components	C-3
C-3	Effect of Duct Leakage and Increased Duct Insulation	C-4
C-4	Effect of Reduced AC Size on Conduction Losses (duct size held	
	constant)	C-5
C-5	Effect of Overcharge on Power Draw - Effectively Oversized Unit	C-6

TABLES

Table

Page

2-1	Summary of Field Test Procedures	. 2-2
2-2	Houses Failing to Meet ASHRAE Infiltration Standard	. 2-3
2-3	Air Conditioner Refrigerant Charge	. 2-1 4
2-4	Summary of Field Findings	. 2-15
4-1	Model P Classes Used in Comprehensive Model	. 4-5
4-2	Model Inputs and Data Sources	. 4-6
4-3	Estimated Program Impacts & Costs (without resizing)	. 4-7
4-4	Estimated Program Impacts & Costs (units resized to Manual J tuned to an average duty cycle of 1/1.35 @ Design)	4-8
A-1	Problems Identified by House	A- 5
E-1	Energy Savings - Higher Cooling Loads	. E-1
E-2	Energy Savings - Higher Cooling Loads with Resizing	E-1
E-3	Energy Savings - Lower Cooling Loads	E-2
E-4	Energy Savings - Lower Cooling Loads with Resizing	E-2

EXECUTIVE SUMMARY

Nevada Power Company (NPC), the Electric Power Research Institute, and the Nevada State Energy Office, contracted with Proctor Engineering Group to investigate opportunities in Nevada Power's service territory for improving air conditioning system performance in new residential construction. This investigation has involved field testing the air conditioning units, duct systems, and building shells of a sample of newly built houses; assessing achievable improvements to the systems; and analyzing the potential energy savings and peak demand reductions from such improvements. The investigation found that newly constructed homes in NPC's service territory have substantial deficiencies in their air conditioning systems, similar to those found in studies from other parts of the country (Appendix A contains brief descriptions of related studies). Improvements can be made to provide lower energy usage and reduced demand while improving occupant comfort and satisfaction. These improvements can be accomplished at moderate cost.

The key findings of this study include:

- Duct leakage and existing duct insulation levels cause an average loss of 37% in overall cooling efficiency. Reasonable improvements can eliminate over half of these losses (save 26% ± 5% of the cooling energy¹) for about \$235;
- Air conditioners often have insufficient air flow across the indoor coil and are frequently overcharged, leading to a 12% ± 3% average efficiency loss. Proper installation (following the manufacturers installation instructions) and testing would remedy these problems at a cost of about \$68;
- A program which ensures tight, well-insulated ducts and properly installed efficient air conditioners could reduce cooling usage by approximately 47% and diversified peak demand by 1.2 kW. The additional cost is estimated to be \$650 per unit;
- With properly installed systems featuring well insulated tight ducts the air conditioners should be resized to take advantage of the lower load. This would "lock in" the peak reduction and further reduce the peak demand by 0.4 kW.

NPC has a variety of potentially worthwhile options to pursue for improving cooling efficiency and reducing peak demand. Proper program design, training, and quality assurance are critical issues for actually achieving these improvements. These topics are the focus of a follow-up report under this project.

¹ See Appendix D for a discussion of sample variability and overall uncertainty.

1 BACKGROUND

The Las Vegas area is currently the fastest growing market for new residential units in the nation with an annual growth rate of over 5% in 1993. (SOURCE: Chicago Title & Trust). Nevada Power Company (NPC), the Electric Power Research Institute (EPRI) and Nevada State Energy Office (NSEO) contracted with Proctor Engineering Group (PEG) to assess the energy savings and peak demand reductions achievable from a Heating, Ventilating and Air Conditioning (HVAC) efficiency program targeted to new residential construction in Nevada Power's service territory. This assessment involved the following:

- detailed field testing of a sample of 30 newly built homes in the Las Vegas area to identify problems with current practice HVAC system installations;
- a determination of achievable improvements to current practice and the costs of those improvements;
- an engineering analysis of field data to estimate the impacts of potential improvements on energy usage and peak demand, and;
- an implementation plan for changing current practice.

This report describes the activities and results from the first three items.

PRIOR RESEARCH

PEG's prior experience, and the findings of other research projects around the country (see Appendix A), has found that typical air conditioning system installations have numerous problems which adversely impact efficiency, demand, and comfort. The primary problems identified include:

- excessive duct leakage in unconditioned spaces leading to substantial loss of conditioned air, heated return air, and increased house infiltration;
- insufficient air flow across the indoor coil;
- incorrect refrigerant charge;
- excessive system oversizing.

In prior studies, these problems were found to be common, not unusual, circumstances. Duct leakage has become a significant concern in the recent past. Studies from California, Florida, and the Pacific Northwest have consistently found large efficiency losses due to typical levels of duct leakage.

2 FIELD INVESTIGATION

Trade practices and housing styles vary throughout the country and so do the relative frequency and severity of different air conditioner installation problems. In addition, other problems or savings opportunities may be as or more important in NPC's service territory than those listed in Appendix A. A field investigation of newly constructed houses in NPC's service territory was needed to characterize the local problems and opportunities.

Proctor Engineering Group examined 30 newly built houses in the Las Vegas area with a total of 40 air conditioning systems. Houses were unoccupied, but ready for occupancy (i.e., fully drywalled with operating central air conditioning systems). NPC provided contacts with local builders. The 30 houses came from 17 developments built by 10 general contractors, utilizing 11 HVAC contractors. They are believed to be representative of typical new construction in the area.

FIELD DATA COLLECTION PROTOCOL

PEG designed the field investigation to examine a wide variety of potential HVAC problem areas and to collect information needed to assess summer design cooling loads and overall building shell thermal integrity. The field procedures included many recently developed state-of-the-art diagnostic tests (particularly for assessing the duct systems). The field testing protocol is summarized in Table 2-1. Copies of the field data collection forms are attached as Appendices F, G, and H.

IMPLEMENTATION

Highly trained, efficient and organized field technicians were needed to perform the field work within the project's time and budget constraints. PEG contracted with Conservation Services Group (CSG) to perform the work. The lead technician had been previously trained by PEG and was experienced with PEG procedures. All technicians were carefully trained by PEG to ensure high quality data for the study.

The two person teams required an average of half a day per house. Scheduling began at the end of June, 1994 and all field work was completed promptly by mid-July.

Field Investigation

Table 2-1 Summary of Field Test Procedures

Parameter	Tosts	Description / Use
	Tests	Description / Use
Duct	Duct Blaster 114 - total	pressurize ducts to 25 pa with registers sealed, measure ran
Leakage	leakage	flow, check pressures in other parts of duct system
1	Duct Blaster TM -	repeat above test while blower door pressurizes house to 25
	exterior leakage	pa, eliminating pressure difference between ducts and house
	Half Nelson -	measure pressures in supply and return plenums with air
	return/supply leakage	handler on and registers sealed - results used to adjust duct
	split	blaster results into supply and return leakage rates
	Pressure Pan - leakage	measure pressures at individual registers with blower door
	location indicator	pressurizing house to 50 pa
Air Handler	Flow Hood	measure flow rate into return grille(s) and supply registers -
Flow	'	return flow plus return leakage equals total air handler flow
1	Operating Static	measure static pressures in supply and return plenums - used
,	Pressures	for adjusting duct blaster results to estimate supply and return
	•	leakage fractions when air handler operates, also useful for
	ĺ	assessing duct design
AC Capacity	Enthalpy Change	measure wet and dry bulb temperatures in supply and return
I	across AC coil	plenums - when combined with air handler flow rate can
1		calculate actual capacity (under test conditions, which can be
· · · · · · · · · · · · · · · · · · ·	1 '	adjusted to ARI standard) ²
AC EER	Wattage Input	use house electric meter to measure actual electric input to
	Wattage input	AC calculate EER at test conditions by dividing input into
· · · · · · · · · · · · · · · · · · ·		canacity
AC Charge	Superheat /	measure subcooling superheat head pressure hot gas
AC Charge	Subcooling	discharge temp, outdoor unit delta T and power draw -
,	Subcoomig	compare to manufacturer target values when possible Assess
l '	1 '	charge from available ovidence including air handler flow
i '	1 '	rate canadity input measured FER
AC other		rate, capacity, input, ineastice from indeer and outdoor units
AC other	miscenaneous	collect nameplate information from indoor and outdoor units,
Durat	Dellement	assess potential outdoor unit air recirculation
Duct	Delivery	measure delivery temperatures at near, middle, and far
Conduction	Temperatures	registers, compare to plenum temperatures and amplent
1		conditions.
l '	Duct System Location	Estimate percentage of supply and return ducts in various
l '	1 '	locations (attic, garage, inside, etc.) - used to estimate ambient
		conditions around ducts for modeling conduction and leakage
Design	Building Dimensions,	calculate design cooling loads & proper AC size using
Cooling	materials, R-values,	enhanced ACCA Manual J ³
Load	shading/exposures,	
Building	Blower Door Test	Measure CFM_{50} of house, also measure pressures developed
Airtightness	1	in key building zones such as attics

CSG's field manager and PEG staff reviewed all data. The data were entered into spreadsheets along with supplementary information from published manufacturer ratings. The raw data were further analyzed for quality and calculations were performed to derive the system parameters of interest.

² Air Conditioning & Refrigeration Institute (ARI) standard rating conditions of 80°F dry bulb and 67°F wet bulb indoors and 95°F dry bulb outdoors.

³ The Manual J program used in this project used blower door measured leakage rate to estimate Air Changes per Hour (ACH) rather than based on visual observations of the building shell (standard ACCA practice).

Field Investigation

FINDINGS - GENERAL CHARACTERISTICS

The typical house in the study was a slab-on-grade home with 3 bedrooms, about 1800 square feet of living space, a volume of 16,733 cubic feet, gas heat, double glazed windows, and R-30 attic insulation with a tile roof (5 of the homes in this study had a radiant barrier attached to the underside of the roof sheathing). Few south or west facing windows had any architectural shading. There were 13 one story and 17 two story houses. Nine of the ten houses with two AC systems had two stories and only one was in a one story house. All of the single AC houses had the air handler located in the attic or had a roof mounted package unit. The attic location exacerbates the impacts of return system leakage and increases conductive heat gains. Houses with two systems usually had the air handler for both systems in the attic or had a roof mounted package units, although a two houses had the air handler for the system serving the first floor in the garage. Houses with two systems usually had both return grilles located in one central location, commonly the upstairs hallway.

The houses were fairly tight, with an average air leakage of 2022 Cubic Feet per Minute at 50 Pascals pressure (CFM50) measured with a blower door. This level of air tightness lowers the cooling and heating load of the house and saves energy. However, when the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) standard 62-1989 is applied to modeled ventilation nearly a third of the houses do not meet the minimum infiltration criteria. ASHRAE standard 62-1989 specifies that residential structures must have 0.35 natural Air Changes per Hour (ACH) or 15 CFM per person whichever is greater. The number of units that do not meet the ASHRAE standard (with the windows closed⁴) based on blower door measurements and the Lawrence Berkeley Laboratory (LBL) infiltration model⁵, is shown in Table 2-2.

	Heating	Cooling	Heating	Cooling
	.35 ACH	.35 ACH	15 CFM/person ⁶	15 CFM/person
Houses Failing to Meet Standard	5	9	2	2
% Failing to Meet Standard	17%	30%	7%	7%

Table 2-2

FINDINGS - DUCT SYSTEMS

The duct systems commonly consisted of a rigid metal return plenum, duct board supply plenum and connecting boxes with R-4 insulated 6" to 8" round flex duct branches to the individual rooms. Most of the systems tested were "bag" systems which are used by the majority of Las Vegas contractors. Bag systems are factory built to the specifications of the contractor. The individual duct runs are assembled at the factory

Houses Failing to Meet ASHRAE Infiltration Standard

⁴The ASHRAE standard assumes that adequate ventilation can be accomplished by opening windows. Since the lowest ventilation rates will occur when the indoor to outdoor temperature difference is small, opening windows for ventilation may be a viable option.

⁵ Calculated using Las Vegas specific wind speeds published in the 1993 ASHRAE Fundamentals and bin weather data published in the Air Conditioning Contractors of America (ACCA) Manual J Seventh Edition Table A4-1. Based on an indoor temperature of 70°F in winter and 75°F in summer.

⁶ Occupancy estimated as number of bedrooms plus one.

94.114

Field Investigation

including the main branch ducts and individual runs to each room. The installers simply put the system in place and make plenum connections. For the final system to be tight both the factory connections and the field connections must be tight. During the testing, the technicians noted that most of the duct systems had obvious and easily eliminated leakage at the plenums, boot connections and air handler. They also noted that existing factory built connections may be subject to future failure because they were made with duct tape. Therefore, the systems were tested when they were as tight as they will ever be. They can be expected to leak more over time due to tape failure and disturbances (i.e., disconnections and tears) caused by cable TV and alarm system installers.

Detailed duct leakage measurements were used to quantify the magnitude and impact of the existing leakage problems and the opportunities for improvement. Duct leakage can be measured in several different ways (Proctor et al, 1994). Total leakage and leakage to the exterior at a particular test pressure are both measurable, but normal operating leakage, split between supply and return, must be estimated to calculate the energy and peak effect of duct leakage.

The total duct leakage test establishes the total amount of leakage out of the ducts when all the registers are sealed and the ducts are pressurized to the test pressure (usually 25 or 50 pascals). Total duct leakage is a fast and accurate test method that is easily applied to new construction even before the drywall is installed. In this study, total duct leakage was tested using a Duct BlasterTM (a trademark of the Energy Conservatory). The average measured total leakage rate was 369 CFM50. The distribution of total duct leakage is shown in Figure 2-1.

94.114 Field Investigation

Figure 2-1 Total Duct Leakage

The unit with over 900 CFM50 of total duct leakage was the unit serving the bottom floor of a two system house. It had a ducted platform return in the garage with an extremely large return leak.

Duct leakage to (and from) the exterior is a better measure of duct leakage problems than the total leakage measurement, but involves more difficult and time-consuming tests. In this study, exterior duct leakage was measured using a blower door and a Duct Blaster[™] pressurizing both the building and the ducts simultaneously. This reduces the duct leakage to inside to a minimum and thus measures the duct leakage to the exterior. The distribution of exterior duct leakage is shown in Figure 2-2.

Figure 2-2 Duct Leakage to the Exterior

The average leakage is 253 CFM50, comprising about 17% of total building leakage on average⁷, slightly tighter than the duct leakage rates found in studies of existing housing in California and Florida (SOURCE: Proctor, 1991; Tooley & Moyer, 1989).

The unit with the largest duct leakage to outside was the unit with the largest total duct leakage. The unit with the second highest leakage to outside was in a single air conditioner home and had a very large supply leak into the attic.

Both the duct leakage to outside test and the total duct leakage test are useful in informing us of the size of the holes in the duct system. The key quantities however are the leakage in the supply and return under operating conditions (as a percentage of the air flow through the indoor coil). In this study, exterior leakage was allocated to the supply and return based on the half Nelson test and the proportion of each side of the system that was in conditioned space. The operating leakage for each side was then estimated by adjusting the leakage rate to the average pressure in that side of the duct

⁷ Calculated as the total exterior duct leakage for each house, including both systems in two system houses, divided by the house leakage as measured by a blower door test.

94.1	14	

Field Investigation

system⁸. Finally, the operating leakage estimates were divided by the flow through the coil. The operating duct leakage split between supply and return is summarized in Figure 2-3. The flow rates averaged 99 cfm for supply leakage and 103 cfm for return leakage, representing about 9 percent of the air handler flow in each case.

Figure 2-3 Supply and Return Leakage as a Percentage of Flow

The unit with the highest leakage relative to air flow is the unit that had the highest total duct leakage. The unit with the second highest leakage relative to air flow has very low air flow through the system with moderate leakage.

FINDINGS - AIR CONDITIONING SYSTEMS

The houses had a wide variety of air conditioning system makes and models. Air conditioners serving an entire house were usually four or five tons while those in the two system houses were usually three tons each. About thirty percent of the units were

⁸ The flow exponent was assumed to be 0.65. The leakage at operating conditions therefore was calculated as Test Flow * (operating pressure/test pressure)^.65

94.114

Field Investigation

package systems. A third had "upsized" indoor coils (most of those were rated a half ton larger than the outdoor unit). Rated EERs ranged from 8.8 to 9.9 and averaged 9.2. Rated SEER values ranged from 10 to 12. Three systems could not be properly tested -one had no charge, the other two were in the same house and had their refrigerant lines crossed so that the indoor air handler of each unit operated with the outdoor unit of the other system! The remaining 37 systems were analyzed with a detailed testing protocol.

Air Handler Flow Rate

The proper operation of an air conditioning system depends upon providing the correct air flow rate across the indoor coil -- usually 400 cfm per ton of nominal capacity. Low air flow has been a common problem found in other studies of air conditioner performance (Proctor, 1991; Neal, 1990). In addition to potentially shortening equipment life, incorrect air flow renders most standard tests for proper refrigerant charge invalid. In a hot/dry climate such as Las Vegas, where sensible cooling is almost the exclusive goal of air conditioning, ACCA recommends higher air flows.

Air flow rate through the return grill was measured (all systems had a single return grill) using a flow hood. Return grill flow was added to the return leakage flow derived from Duct BlasterTM testing⁹. Figure 2-4 shows the distribution of measured flow rates compared to manufacturers' specifications. The average measured flow rate was 345 cfm per ton, fourteen percent below the target value of 400. Half of the units were below 350 cfm/ton (often used as a level requiring corrective action), and thirty percent were below 300 cfm/ton.

⁹ Supply register flows were also measured as a cross-check, although their lower flow rates make the measurements inherently less accurate.

Figure 2-4 Air Handler Flow

Causes of the low air flow were investigated. ACCA Manual D specifies one supply outlet for every 4,000 Btu/hr heat gain and that the cooling capacity of the equipment should not exceed 30,000 Btu/hr per filter grill. Forty two percent of units had an <u>average</u> heat gain of over 4,000 Btu/hr per supply register. Only five of the forty units were less than 30,000 Btu/hr, but none had more than one filter grill.

Manual D also suggests that the typical static pressure difference from before the fan to after the coil is 0.40 inches of water column (100 pascals). The measured values for the systems examined averaged 0.41 inches of water column (102 pascals).

The relationship between the static pressure and air flow is somewhat complex (due to interaction between the air handler fan curve and the actual duct system). To reduce the effect of confounding interactions the relationship between average static pressure and measured flow was evaluated builder by builder. The results are shown in Figure 2-5.

94.114

Field Investigation

Figure 2-5 Air Flow vs. Static Pressure by Contractor

Builders 2 and 9 have the highest air flows. Builder number 2 uses oversized air handlers. The two units with the highest air flow for this builder had air handlers rated one ton larger than the outdoor unit. Builder number 9 had high air flow with relatively low external static pressure. This is the only builder who uses rigid duct work rather than flex duct.

Checking Refrigerant Charge

Manufacturers of residential air conditioning systems recommend various methodologies for determining proper system charge. The most common method for air conditioners with fixed metering devices (cap tube and orifice) is evaporator superheat. For systems with Thermostatic Expansion Valves (TXV) the subcooling method is suggested. Only one system in this study had a TXV.

Evaporator superheat is the difference in temperature between the saturated refrigerant vapor in the evaporator and the refrigerant vapor in the suction line exiting the evaporator. The basic operation of a refrigerant system makes evaporator superheat a

94.114 Field Investigation

reliable method of checking refrigerant system charge under many conditions. In order for this method to be accurate several items must be determined prior to its use:

- Air flow through the indoor coil must be within +/- 50 CFM of the manufacturers suggested flow (400 CFM per ton).
- Refrigerant system evacuation must be complete (all non-condensables must be removed from the system).
- The indoor and outdoor temperatures must be within the range specified by the manufacturer as being acceptable for checking charge though the superheat method.

There are several problems in using the superheat methodology (one is specific to hot dry climates such as Las Vegas):

- Contractors do not measure air flow through the indoor coil. Contractors assume the air flow through the indoor coil is correct.
- Installation technicians often do not properly evacuate the refrigerant system when it is installed (the vast majority do not even carry the micron gauge needed to ensure proper evacuation).
- The superheat methodology was developed for conditions that exist in the more humid and cooler parts of the United States. It will not work in hot dry climates that experience low indoor wet bulb temperatures in combination with high outdoor dry bulb temperatures.

The last problem is severe, as can be illustrated by the superheat charging chart shown in Figure 2-6. The superheat charging method consists of running the air conditioner long enough to reach steady state, then testing the superheat, indoor wet bulb temperature and outdoor dry bulb temperature. Field Investigation

WET BULB SUPERHEAT CHART

Figure 2-6 Superheat Charging Chart

For a given indoor wet bulb temperature and a given outdoor temperature the target superheat can be read off the chart. For example if the indoor wet bulb temperature is 68°F and the outdoor temperature is 85°F the target superheat can be determined by following the diagonal line marked 68°F to the vertical line marked 85°F. Moving straight to the left from that intersection point the target superheat can be read as 19°F.

However, for an indoor dry bulb temperature of 75°F the indoor wet bulb in Las Vegas is often below 58°F. (In our tests the indoor wet bulb averaged 59°F with a dry bulb of 85°F). If the 58°F (the lowest diagonal line) on Figure 2-6 is followed to the lower limit of the graph it is apparent that the outside temperature cannot exceed 82°F to check charge in this manner. An outdoor temperature of less than 82°F during daylight hours in the cooling season is rare in Las Vegas (the average outdoor temperature during our testing was 99°F).

There are at least two approaches to the problem of ensuring correct charge in hot/dry climates. The first is to ensure that the installation technicians have the proper equipment (and training to use it) to properly evacuate and weigh in the correct amount

94.114	
Field	Investigation

of charge. This would have to include random quality assurance checks and action to obtain compliance. The second approach is to work with manufacturers and researchers to devise a charge test that is easily applied in hot/dry climates.

An advantage to the second option is that the optimal charge could be determined for these hot/dry climates (the optimal charge for a hot dry climate is not necessarily the same as the optimal charge for the purpose of an SEER rating based on 82°F outdoors). Research at Texas A&M University has shown for higher temperatures that air conditioner capacity is greater and efficiency is higher for systems containing less than the manufacturers specified charge (SOURCE: Farzad & O'Neal, 1988, 1989). This is illustrated in Figure 2-7.

Figure 2-7 EER vs. Charge and Outdoor Temperature (capillary tube system)

Refrigerant Charge

Incorrect refrigerant charge is a common problem with air conditioning systems. It is a common expectation that newly installed systems would be properly charged. Unfortunately, new systems appear to suffer from incorrect charge as often as older systems (SOURCE: Hamerlund et al, 1990).

In addition to the problems associated with the hot/dry climate of Las Vegas, technicians rely on rules of thumb and guesswork. Technicians consider weighing in the

94.114

Field Investigation

charge too time consuming (although evacuating the system and weighing in the refrigerant can actually be accomplished in approximately 20 minutes when done properly). PEG has been active in developing step-by-step approaches for assessing air conditioner performance based on a combination of measurable system parameters. The general approach is:

- Field technicians measure a number of key temperatures, system pressures, air handler flow rate, and power draw. Nameplate information and manufacturer ratings are also noted.
- Parameters such as subcooling, head pressure, and superheat are compared to manufacturers ratings and/or charts. If the charts are available, air flow is correct, and the test conditions are within the chart, then proper charge can be determined. Commonly, this approach fails to provide results or the results are inconclusive (as was the case for 28 of the 37 systems tested in this project).
- When the above information is combined with measurements of power draw, actual capacity and EER, air flow across the indoor coil, and temperature difference across the outdoor coil, a more informed conclusion can be reached because overcharge and undercharge are often identifiable by characteristic patterns in these measurements.

This approach is usually effective at determining whether a unit is properly charged. The results of applying these procedures¹⁰ to the units in this study are summarized in Table 2-3. If some of the key system parameters conflicted with the general conclusion on charge, the results are qualified as "possibly".

An conditioner Kenngerant Charge					
Charge Indication	# units	% of units			
Correct Possibly Correct	5 3	21%			
Undercharged Possibly Undercharged	3 8	29%			
Overcharged Possibly Overcharged	10 9	50%			

Table 2-3 Air Conditioner Refrigerant Charge

Only 21% of the units inspected appeared to be properly charged. Overcharging was most common with up to half of the units overcharged, and the remainder apparently undercharged. These results are quite similar to the published research from new construction in California (ibid.).

Air Conditioner Sizing

The Air Conditioning Contractors of America (ACCA) Manual J is a standard reference for estimating the design load for residential air conditioning systems. The enhanced Manual J calculations performed on the houses in this study found cooling loads at design conditions ranging from 15,000 to 52,000 Btu/hr with an average of 32,948

¹⁰ Pumping down the system and weighing the charge is also a viable tool. In this study, the systems were not pumped down due to warranty considerations.

94.114 Field Investigation

Btu/hr. About half of the design load came from heat gains through windows and glass doors. The remainder of the gains were nearly evenly dispersed between infiltration, attic conduction, wall conduction, duct conduction, and internal gains.

The 97.5% design conditions for Las Vegas are 106°F dry bulb -- 65°F wet bulb outdoors (about 27 grains of moisture per pound of air) and 75°F dry bulb indoors. With the extremely low outdoor humidity it is no surprise that the latent load will be near zero. The capacity of the installed equipment at design conditions was estimated from manufacturers' data for a dry coil corrected to 105°F outside and 75°F inside. The average design capacity of the equipment installed <u>per house</u> is 43,686 Btu/hr. This capacity represents an average 33% oversizing when compared to the calculated design loads. This percentage of oversizing is less than PEG has found in previous work and is inconsistent with the submetered air conditioner data from Nevada Power. For this reason the effect of two levels of oversizing were tested in the final calculations.

SUMMARY OF FIELD FINDINGS

The new homes in this sample were relatively air tight with up to 30% that may not meet ASHRAE ventilation standards in the summer with the windows closed. The measured supply duct leakage averaged 9% of the air handler flow. Return leakage was approximately of the same size (9.3%). Significant problems were also found with the air conditioners which exhibited low flow and were incorrectly charged over half the time. These findings are consistent with similar investigations (See Appendix A). Table 2-4 summarizes the key results from the field investigation.

	Shell	Ducts		Air Conditioner				
	Leakage	Operating Leakage (% of flow)		Rated Capacity	EER	Air Flow	Charg	;e
	CFM50	Supply	Return			cfm/ton		
Unit Mean		9%	9%	41278	9.2	345	Correct	21%
House Mean	2022			55037			Under	29%
Std Deviation	485	5%	7%	9766	0.3	81	Over	50%
Median	1925	7%	7%	40000	9.0	346		
Minimum	1000	2%	2%	21600	8.8	207		
Maximum	2850	24%	39%	59000	9.9	527		

Table 2-4 Summary of Field Findings

3

ACHIEVABLE IMPROVEMENTS AND THEIR COSTS

Once the nature and extent of the problems were defined in the field investigation, PEG staff investigated the realistically achievable improvements that could be made to the duct and air conditioning systems and the associated costs. Improvements examined include: sealing the ducts, using better insulated ducts, properly installing and testing the air conditioner, and increasing the peak EER of the air conditioner by two points.

- PEG staff accompanied duct installers for several installations to assess work methods and estimate the additional time and materials needed to properly seal the systems with mastic and ties. The incremental cost is estimated at \$95 per system, \$50 for materials and \$45 for 1 hour of extra labor. Based on prior experience with systems in California, Florida, and North Carolina, PEG estimates that total duct leakage of 75 CFM25 per system is realistically achievable on every new unit¹¹. This opportunity is effectively lost if the ducts are not sealed when the house is being built. On a retrofit basis the cost would exceed \$200 and the final leakage would exceed that achievable upon construction.
- The prime manufacturer of the "bag" duct systems for Las Vegas estimated the extra cost for doubling the insulation level to R-8 at about \$140 per house (\$490 per system compared to the current average of \$350).
- PEG estimates that properly installing and testing an air conditioner (including proper evacuation, proper charge, checking capacity and EER) requires an extra 1.5 hours per system at an incremental cost of about \$68. There is also a material savings from using less refrigerant¹².
- Using a properly sized air conditioner (about one ton reduction after system improvements) will save \$100 per air conditioner.
- The incremental cost of an air conditioner with a two point higher peak EER¹³ is estimated at \$350 per system based on price quotes from 5 manufacturers.

¹¹Researchers and practitioners have a variety of opinions on the proper specification. Some argue for a more stringent standard based on the potential gains from a well sealed distribution system. Some argue for a less stringent standard based on the level of success they have had while using contractors with little training and little or no follow up. Seventy five CFM at 25 pascals is a standard that is achievable with the contractors PEG observed in Las Vegas, if adequate training and follow up is supplied. A more stringent standard could be met with significant sealing of the air handler. Twenty five pascals was chosen as the test pressure because it is closer to the average pressure across the duct leaks than 50 pascals. Seventy five CFM at 25 pascals is approximately equal to 118 CFM at 50 pascals.

¹²For approximately \$25 contractors could install TXV metering devices in place of fixed metering devices. TXV's are less sensitive to incorrect charge. Local contractors however are concerned over TXV failures. Until their concerns are adequately investigated specifying TXV's would probably not be productive. They are more likely to agree that the correct amount of charge should be in the system.

¹³ Peak EER and SEER are not equivalent. Peak load reductions are not assured by increasing SEER. (SOURCE: Proctor, et al, 1994)

Achievable Improvements and their Costs

The benefits of these potential improvements were assessed through detailed modeling of air conditioner and duct performance.

4 MODELING IMPACTS ON USAGE & PEAK DEMAND

The field investigation found opportunities for potentially significant improvements in system efficiency. Assessing the impacts of the identified problems and their solutions on energy usage and peak demand requires an analysis which models the air conditioner, duct system, and building shell and incorporates the interactions between them. For example, when a leaky return draws air from the attic it raises the temperature at the inlet to the indoor coil resulting in an increase in air conditioner capacity and watt draw. PEG has adapted the Palmiter Duct Model (SOURCE: Palmiter and Bond, 1991) and created an AC model for dry climate performance. These models are combined into a comprehensive model that incorporates many of the complex interactions in the systems studied. The model calculates system efficiencies, losses, loads, energy usage, and demand at a series of outdoor temperature bins based on a typical weather year (TMY) in Las Vegas.

A realistic analysis of peak demand impact also requires characterizing the effect of occupant behavior patterns on actual cooling demand. PEG has developed a model which utilizes submetered air conditioner data to characterize the interactions between occupant behavior patterns/cooling load and effective capacity. This peak model (Model P) significantly improves upon most existing peak models which usually model peak from one general residential AC demand curve.

AIR CONDITIONER PERFORMANCE MODELING

Air conditioner performance can be characterized at given conditions by system capacity and EER. These two quantities can be used to calculate the power draw and, along with air handler flow rate, the temperature drop across the indoor coil. System capacity is modeled as a function of outdoor temperature, return plenum temperature, air handler flow rate, and charge. The model assumes a nearly dry coil given local climate. EER is modeled as a function of outdoor temperature, return plenum temperature and charge. The air conditioner model return plenum temperature is calculated from the duct system model.

For both capacity and EER, each factor effecting performance is represented as a multiplicative adjustment to the rated value. The adjustment factors are based on available published data and studies by PEG. This model is discussed in Appendices B and C.

DUCT EFFICIENCY MODELING

The impacts of duct leakage and conduction on effective system efficiency and building loads is complex. Duct leakage can cause four types of efficiency losses:

Modeling Impacts on Usage and Peak Demand

- the supply air that leaks to the exterior is a direct efficiency loss;
- the return air coming from outside and spaces warmer than outside (e.g. the attic) adds to building loads;
- the supply and return flows increase the air leakage rate of the building shell depending upon the relative size of the flows and the building's natural infiltration rate;
- when the air handler is off, the duct leaks still add to the building shell leakage rate.

Each of these effects is accounted for in the duct efficiency model. The model inputs include the supply and return leak fractions (as a percentage of the air handler flow rate¹⁴), the temperature of the air surrounding the return ducts, and the natural air leakage rate of the building shell (based on the blower door test and a limited implementation of the LBL infiltration model).

Conductive heat gain into the ducts is modeled as a function of duct area, R-values, the temperature of the air around the ducts (which depends on outdoor temperature and duct location), and the temperature of the air in the ducts (which depends on the air conditioner capacity, duct air flow, and duct leakage rate). Duct conduction losses are dependent on the duty cycle of the air conditioner and as such are dependent on the relationship between the load, capacity, and duct size.

The leakage and conduction models interact in terms of calculating return plenum and average supply duct temperatures and in avoiding any "double-counting" (e.g., the efficiency loss due to conductive gains into the portion of supply air which leaks out of the ducts is not included).

ENERGY USAGE MODELING

All of the duct-related losses are expressed in terms of percentage efficiency losses to the air conditioning system. The effective capacity of the air conditioner is calculated as the system capacity at given conditions adjusted for duct efficiency losses. The building shell load is calculated as a piece wise linear response to outdoor temperature. The effective capacity and the building shell load are used to calculate the duty cycle, which is used to calculate the hourly energy usage (adjusted for cycling losses). These calculations are performed at each of several different outdoor temperature bins and the results are combined by weighting by the number of hours at that temperature each year in Las Vegas to arrive at an annual energy usage rate. The energy usage model assumes that all units are controlled by a constant thermostat setting (75°F). Occupant interactions other than constant temperature setting are modeled for the peak demand model.

¹⁴ Because duct leakage rates are specified as a percentage of the air handler flow rate, an increase in system air flow leads to an increase in duct leakage. This approach assumes that air handler flows are increased through means which increase static pressures in the ducts (e.g. increasing fan speed), not decrease static pressure (e.g. by increasing the size of the ducts).

Modeling Impacts on Usage and Peak Demand

PEAK DEMAND MODELING (MODEL P)

The diversified demand of air conditioning systems during system peak involves more than simply modeling performance and efficiency during peak conditions. Occupant behavior patterns can have a large influence on actual demand during peak. Some households (Group A) have no air conditioning use during peak. These homes may be unoccupied at that time or the occupants have the air conditioner switched off. Other households may have the air conditioner running continuously (Group D). This is the case because often occupants have adjusted the thermostat down. Another group of households (Group B) have their air conditioners cycling on and off based on thermostatic control. Some households may effectively have a constant thermostat setting in the period of interest but the effective capacity of their air conditioning system is less than the load. These households (Group C) have air conditioners running continuously, but some achievable reduction in load or increase in effective capacity would result in them cycling. The proportion of households in each of these categories must be estimated to arrive at reasonable estimates of diversified peak demand.

PEG received two samples of existing load research data from Nevada Power in order to estimate the proportion of households in each of the above customer groups during system peak times (4-5 PM on hot weekdays is the residential <u>and</u> system peak for Nevada Power). Both load data samples are from customers participating in a load management program which cycles their air conditioners on and off during peak times on particular days. These customers may or may not represent the new construction market in terms of demographics, behavior patterns, building shell characteristics, or air conditioning equipment. Sample #1 consisted of data from July 12 to August 20, 1992 for 40 primary air conditioners (the second unit in two air conditioner households was not metered). Sample #2 was selected with particular effort to represent typical customers in terms of usage levels and demographics. This sample was from a metering project of 78 primary and secondary air conditioners begun in the summer of 1994 and data from three uncontrolled hot days were available for the analysis.

In order to increase confidence in the results, an additional set of data was obtained from the EPRI Center for Electric End-Use Data. Sample #3 consisted of 136 air conditioners located near 18 different weather stations in hot climates. Submetered data on new homes in the Las Vegas area were not available.

PEG analyzed the available load data from all three samples and classified each customer-peak hour into one of the four groups. Mean connected loads were also calculated by group in order to assess inter-group differences. The average duty cycle of Group B customers on peak hours was also analyzed. The percentages of customers in each class for each sample are shown in Figure 4-1.

Modeling Impacts on Usage and Peak Demand

Figure 4-1 Model P Classes from Submetered Samples

Since demographic and other variables indicate that Sample #1 is not representative of NPC's new residential customers, the data from Sample #2 were used to classify the mix of customers assumed to occupy new construction in Las Vegas.

The <u>actual</u> cooling loads for the new houses inspected in this program are not known. However, when the effective capacity equals the actual load, the duty cycle of the equipment will be 100%. For homes that are in Class B/C in the NPC #2 data, the underlying duty cycle at 112°F is 67.9%. The sensitivity of the results to actual loads in these new homes was assessed by modeling a cooling load that produced an underlying average duty cycle of 67.9% (lower cooling load) and a cooling load that produced an underlying duty cycle of 77.9% (higher cooling load).

94.114

Table 4-1

Modeling Impacts on Usage and Peak Demand

The data used in the model is summarized in Table 4-1.

Model P Classes Used in Comprehensive Model					
	Group A	Group B/C	Group D		
	System Off	Cycling or could cycle	Continuous		
Connected Load (kW)	5.09	4.69	4.48		
Underlying Duty Cycle	0%	67.9%	100%		
(lower cooling load)					
Underlying Duty Cycle	0%	77.9%	100%		
(higher cooling load)					
Percent of Customers	18.1%	55.1%	26.8%		

The data in the table are used to adjust the system modeling results by Model P class. The diversified demand is calculated as the weighted sum of the demands of the four groups. Group A households have no demand at peak. Group D households' demand equals their modeled connected load (adjusted by the relative loads of a D household to an average household). Group B and C households are in a constant thermostat setting mode and their duty cycle changes as different scenarios are modeled. This is discussed in Appendix B.

SUMMARY OF MODEL INPUTS

The cooling model requires information on numerous aspects of the air conditioner, the duct system and its surroundings, and the building shell. Table 4-2 describes the inputs and the sources used in this project. A more detailed description of model and data sources is provided in Appendices B and C.

Modeling Impacts on Usage and Peak Demand

Model Inputs & Data Sources					
Category	Model Input	Source / Assumption			
Temperatures	Outdoor Temperature	Bin data for Las Vegas, peak of 115°F			
	Tamperature	Assumed at 75 F			
	Temperature	weighted average of outdoor and attic temperatures			
	surrounding ducts	(assumed 20°F higher than outdoor) based on field-			
	-	estimated location breakdown for supply and return			
	Temperature of	assumed 40% from attic, 60% from exterior			
	infiltrating air				
Duct System	Supply & return leakage	based on Duct Blaster [™] tests, air flow test, and operating			
	fractions	pressure measurements			
	Duct leakage % of shell	based on Duct Blaster [™] test and blower door test			
	leakage				
	Duct Area (square feet.)	based on # of runs, sizes- checked with manufacturers.			
	Duct R-Value	R-4 based on insulation thickness - checked with mfr.			
Air Conditioner	Rated capacity & EER	from nameplate information and published values			
	Air Handler Flow	from field tests using flow hood and duct leakage			
	Charge	from field tests - assuming under/overcharged are each			
		20% off ¹⁵			
Building Shell	Cooling load	Two levels of load (lower and higher) tuned to two			
	-	different duty cycles			
	Airtightness (CFM50)	from blower door test			

Table 4-2 Model Inputs & Data Source

MODELING RESULTS - BASELINE CONDITIONS

When applied to the 40 systems tested in the field investigation, the energy and demand models predict an average annual cooling load of 2948 kWh with 3.18 kW of diversified demand at system peak (2588 kWh and 2.99 kW for the lower cooling load model runs). The annual consumption compares favorably with the annualized consumption of 3160 kWh ¹⁶ of the primary units in Sample #1. Duct-related efficiency losses average 37% of system capacity with 23% due to leakage and 14% due to conduction. Problems with air conditioner system air flow and charge account for 12% of usage but have no net effect on peak demand.

The estimated impacts and costs of potential improvements to new residential construction in Las Vegas are summarized in Tables 4-3 and 4-4 (Appendix E contains summary tables for both sizing assumptions and detailed output tables). Table 4-3 shows the savings and peak reduction potential without resizing the air conditioners and Table 4-4 shows the same information if the air conditioners are resized to an actual 35% oversize at design. It is estimated that builders can be convinced to install air conditioners with an actual capacity that exceeds actual load by only 35%. Convincing builders and HVAC contractors will probably require additional field testing of sizing methodologies.

¹⁵An assumptions of 20% under or over charge keeps the model within the range of known effects and is conservative relative to the level of incorrect charge that is measured in the field.

¹⁶Normalized to the connected loads of the new construction units.

94.114

Modeling Impacts on Usage and Peak Demand

Estimated Program Impacts & Costs (without resizing)					
		Savings			
Program Design Elements	Direct	kWh	%	kW	%
	Cost		(95% CI) ¹⁷		(95% CI)
Baseline - Systems as found	0	2948		3.18	
A. Restrict Duct Leakage to 75 CFM25	\$95	544	18%	0.45	14%
total			(±4.5%)		(±2.7%)
B. Duct Lkg 75 & R-8 Duct Insulation	\$235	769	26%	0.67	21%
			(±5.3%)		(±3.3%)
C. Correct AC charge and air flow rate	\$68	364	12%	0.03	1%
			(±2.9%)		(±3.1%)
D. Duct Lkg 75, Charge, Air flow	\$163	870	30%	0.54	17%
			(±5.6%)		(±4.4%)
E. Duct Lkg 75, R-8, Chg/flow	\$303	1034	35%	0.71	22%
			(±6.1%)		(±4.7%)
F. EER 2 higher, Chg/flow	\$418	827	28%	0.60	19%
			(±3.8%)		(±3.4%)
G. All of the above	\$653	1377	47%	1.16	36%
			(±6.8%)		(±5.1%)
H. Shade Windows	N/A	348	12%	0.19	6%
			(±1.1%)		(±1.2%)
I. Shade Windows + all of the above	\$653+	1578	54%	1.29	41%
			(+7.2%)		$(\pm 5.4\%)$

Table 4-3

 $^{17}\mbox{See}$ Appendix D for a discussion of sample variability and overall uncertainty.
Modeling Impacts on Usage and Peak Demand

Table 4-4

Estimated Program Impacts & Costs (units resized to Manual J tuned to an average duty cycle of 1/1.35 @ Design)

			Sav	ings	
Program Design Elements	Direct	kWh	%	kW	%
	Cost		(95% CI) ¹⁸		(95% CI)
Baseline - Systems as found	0	2948		3.18	
A. Restrict Duct Leakage to 75 CFM25	\$95	410	14%	0.70	22%
total			(±4.6%)		(±3.0%)
B. Duct Lkg 75 & R-8 Duct Insulation	\$235	691	23%	1.04	33%
			(±5.1%)		(±3.4%)
C. Correct AC charge and air flow rate	\$68 ·	281	10%	0.28	9%
_			(±2.9%)		(±3.4%)
D. Duct Lkg 75, Charge, Air flow	\$163	705	24%	0.87	27%
			(±5.4%)		(±4.2%)
E. Duct Lkg 75, R-8, Chg/flow	\$303	944	32%	1.18	37%
			(±5.9%)		(±4.6%)
F. EER 2 higher, Chg/flow	\$418	758	26%	0.80	25%
			(±3.8%)		(±3.8%)
G. All of the above	\$653	1303	44%	1.54	48%
			(±6.6%)		(±5.1%)
H. Shade Windows	N/A	262	9%	0.39	12%
			(±1.5%)		(±2.0%)
I. Shade Windows + all of the above	\$653+	1487	50%	1.72	54%
			(±6.9%)		(±5.3%)

These tables show that there are a number of potentially attractive options for reducing cooling usage and peak demands at reasonable incremental costs. For example from Table 4-3, Design B, which only improves the duct system, should save about 26% of the energy usage and reduce peak by about 21%. If the installed air conditioner is properly sized to the new load as shown in Table 4-4, the energy savings drops to 23% but the peak reduction increases to 33%.¹⁹

Design F, which involves the selection and installation of the air conditioner shows a 28% energy savings and 19% peak reduction. With resizing, this design has an energy savings of 26% and a peak reduction of 25%.

Design G, which includes all contemplated duct and air conditioner measures could reduce usage by as much as 47% and peak demand by up to 36%. If south and west facing windows are also provided with external shading the total savings is even higher (Design I).

NOTES ON THE COMPREHENSIVE MODEL

The comprehensive model used in this study is unique in modeling many of the interactions between the ducts, air conditioner, and building shell. At the same time it, like all models, is based on simplifications of the systems involved. Additional research

¹⁸See Appendix D for a discussion of sample variability and overall uncertainty.

¹⁹ For a discussion of interactions see Appendix C.

Modeling Impacts on Usage and Peak Demand

is needed on air conditioner performance in hot/dry climates under peak conditions, particularly with typical field conditions (other than "correct" charge and air flow).

Actual cooling loads are highly subject to customer interactions and only metered data can accurately determine the relationship between cooling demand and cooling capacity. For that reason cooling loads were modeled at two different levels in this study. The results of this sensitivity analysis show that the <u>percentage</u> energy savings and <u>percentage</u> peak reduction is only mildly effected by assumptions about cooling load within the expected range. For example from Tables 4-3 and E-3, the energy savings under Design A (reduced duct leakage) changes from 18% to 19%. The assumption of a constant 75°F thermostat setting and cooling loads that increase linearly with outdoor temperature²⁰ are simplifications that effect the absolute energy consumption numbers much more than they effect the percentage savings. An analysis of hourly sub-metered usage patterns from similar newly-built houses could be used to "true-up" these percent savings estimates to typical usage levels.

The highest levels of savings are most subject to uncertainty because they result from complex interactions. Proctor Engineering Group recommends that these savings and peak reductions be verified by metering a sample of buildings.

²⁰ The model assumes a cooling load (including solar gain) that increases linearly with outdoor temperature from 80°F to design (106°F). The cooling load above design is assumed to have a constant solar gain component and a conductive component that is linear with outdoor temperature.

5

CONCLUSIONS AND RECOMMENDATIONS

Newly constructed homes in Nevada Power Company's service territory have substantial deficiencies in their cooling systems, similar to those found in studies from other parts of the country. Moderate cost improvements can be achieved to lower energy usage and demand while improving occupant comfort and satisfaction.

CONCLUSIONS

- Duct leakage and existing duct insulation levels cause an average loss of 37% in overall cooling efficiency. Reasonable improvements can eliminate over half of these losses (save 26% ± 5% of the cooling energy) for about \$235;
- Air conditioners often have insufficient air flow across the indoor coil and are frequently overcharged, leading to a $12\% \pm 3\%$ average efficiency loss. Proper installation (following the manufacturers installation instructions) and testing would remedy these problems at a cost of about \$68;
- A program (Design G) which ensures tight, well-insulated ducts and properly installed efficient air conditioners could reduce cooling usage by approximately 47% and diversified peak demand by 1.2 kW. The additional cost is estimated to be \$650 per unit;
- Peak demand is particularly effected by the connected load²¹ of the air conditioner (for some groups of customers reducing connected load is the only way to reduce peak demand). Air conditioners can be installed with lower connected load (via lower capacity) if the systems are operating properly. Resizing the air conditioner is also a more certain change in peak than relying on the effect of duct tightness (or other program elements) alone. If air conditioners were resized to take advantage of properly installed efficient systems featuring well insulated tight ducts (Design G) peak demand would be reduced by an additional 0.4 kW.

NPC has a variety of potentially worthwhile options for improving cooling efficiency and reducing peak demand. Proper program design, training, and quality assurance are critical issues for actually achieving these improvements. These topics are the focus of a follow-up report under this project.

RECOMMENDATIONS

1) Program implementation should begin with a number of submetered houses (comparison and experimental) to verify the model results and to determine the achievable level of capacity reduction.

²¹Connected load is Capacity/EER. Connected load is not a constant for air conditioners, it increases with outdoor temperature (and other variables).

Conclusions and Recommendations

- 2) In order to ensure peak reduction, improvements on system installation and design should be accompanied with reductions in air conditioner capacity.
- 3) If air conditioner capacity is reduced, it is recommended that the duct systems remain the same size to reduce static pressures and improve air flow.
- 4) If recommendation #3 is followed, it is essential that duct insulation be increased.
- 5) Air handler manufacturers should be enlisted to work with utilities toward the common goal of building tighter air handling units, which are the cause of significant distribution system leaks and are outside the influence of the local installer;

The following additional research is recommended:

- Air conditioners on a sample of newly constructed homes in Las Vegas should be submetered. This can be combined with the first recommendation above.
- Air conditioner performance should be laboratory tested under a wide variety of operating conditions (air flow, charge, indoor temperature, and outdoor temperature) and system types. This would assist in modeling the air conditioner under peak conditions "typical" to Las Vegas.
- New construction air conditioner installation practices in Las Vegas should be observed. The results would allow refinement of program specifications.

REFERENCES

Cavalli, J. and J. Wyatt, 1993. "Interpreting Impact Evaluation Results to Defer Local T&D Investment". 1993 International Energy Program Evalution Conference, Chicago, IL.

Cummings, J., J. Tooley Jr., N. Moyer and R. Dunsmore. 1990. "Impact of Duct Leakage on Infiltration Rates and Pressure Differences in Florida Homes." Proceedings from the ACEEE 1990 Summer Study on Energy Efficiency in Buildings, American Council for an Energy Efficient Economy, Washington, D.C.

Cummings, J., R. K. Vieira, J. K. Sonne, and J. Klongerbo. 1994. "Residential Air Conditioning Sizing Methodology Draft Final Report". Submitted to Department of Community Affairs, Florida Energy Office, Tallahassee, FL.

Farzad, M. and D. O'Neal. 1988. "An Evaluation of Improper Refrigerant Charge of a Split-system Air Conditioner with Capillary Tube Expansion - Final Report", Energy Systems Laboratory, Texas A&M University, ESL/CON/88-1.

Gammage, R.B. et al. 1986. "Parameters Affecting Air Infiltration and Airtightness in Thirty-one East Tennessee Homes". *Measured Air Leakage of Buildings*, pp. 61-69. Trechsel/Lagus, editors, ASTM STP940.

Hammerlund, J., J. Proctor, G. Kast and T. Ward. 1990. "Enhancing the Performance of HVAC and Distribution Systems in Residential New Construction." Proceedings from the ACEEE 1992 Summer Study on Energy Efficiency in Buildings, American Council for an Energy Efficient Economy, Washington, D.C.

Jacob, M. and A. Zebedee, 1994. "The Day the Engineers Were Right: Confirming the Peak Demand Reductions of FPC's Air Conditioner Duct Test and Repair Program". Proceedings from the 1994 ACEEE Summer Study on Energy Efficiency in Buildings, American Council for an Energy Efficient Economy, Washington D.C.

Jacobson, R., J. Proctor and A. Polak. 1992. "PG&E Appliance Doctor Pre-Production Test." Proceedings from the ACEEE 1992 Summer Study on Energy Efficiency in Buildings, American Council for an Energy Efficient Economy, Washington, D.C.

Jump, D. A., and M. Modera. 1994 "Energy Impacts of Attic Duct Retrofits in Sacramento Houses." 1993 . Proceedings from the 1994 ACEEE Summer Study on Energy Efficiency in Buildings, American Council for an Energy Efficient Economy, Washington D.C.

References

Kinert, R.C., D Engle, J. Proctor, R. Pernick. 1992. "The PG&E Model Energy Communities Program: Offsetting Localized T & D Expenditures With Targeted DSM". Proceedings from the 1992 ACEEE Summer Study on Energy Efficiency in Buildings, American Council for an Energy Efficient Economy, Washington D.C.

Neal, L. 1990. "Field Experiences with Central Air Conditioners and Heat Pumps", AEC North Carolina Alternative Energy Corporation.

Neal, L. and D. O'Neal. 1992. "The Impact of Residential Air Conditioner Charging and Sizing on Peak Electrical Demand." Proceedings from the 1992 ACEEE Summer Study on Energy Efficiency in Buildings, American Council for an Energy Efficient Economy, Washington D.C.

O'Neal, D., C. Ramsey and M. Farzad. 1989. "An Evaluation of the Effects of Refrigerant Charge on a Residential Central Air Conditioner with Orifice Expansion". Energy Systems Laboratory, Texas A&M University, ESL89-06.

Orans, R. and C. Woo, and J. Swisher. 1991. "Targeting DSM for T&D Benefits: A Case Study of PG&E's Delta District". Electric Power Research Institute, Palo Alto, CA.

Palmiter, L. and T. Bond, 1991. "Interaction of Mechanical Systems and Natural Infiltration". Proceedings from the AIVC Conference on Air Movement and Ventilation Control within Buildings.

Palmiter, L. and P. Francisco, 1994. "Measured Efficiency of Forced-Air Distribution Systems in 24 Homes". Proceedings from the 1994 ACEEE Summer Study on Energy Efficiency in Buildings, American Council for an Energy Efficient Economy, Washington D.C.

Parker, D.S. 1989. "Thermal Performance Monitoring Results From the Residential Standards Demonstration Program." *Energy Buildings*, pp 231-248.

Proctor, J., B. Davids, F. Jablonski, and G. Peterson. 1990. "Pacific Gas and Electric Heat Pump Efficiency and Super Weatherization Pilot Project: Field Technical Report". Pacific Gas and Electric Company, San Francisco, CA.

Proctor, J. 1991. "Pacific Gas and Electric Appliance Doctor Pilot Project: Final Report." Pacific Gas and Electric Company, San Francisco, CA.

Proctor, J. and R. Pernick. 1992. "Getting it Right the Second Time: Measured Savings and Peak Reduction from Duct and Appliance Repair." Proceedings from the ACEEE 1992 Summer Study on Energy Efficiency in Buildings American Council for an Energy Efficient Economy, Washington, D.C.

Proctor, J. 1993. "Estimating Peak Reduction from Submetered Data." 1993 International Energy Program Evalution Conference, Chicago, IL.

References

Proctor, J., M. Blasnik, B. Davis, T. Downey, M. Modera, G. Nelson and J. Tooley. 1993. "Diagnosing Ducts: Finding the Energy Culprits". Sept/Oct 1993 *Home Energy* pp 26-31.

Proctor, J., Z. Katsnelson, G. Peterson, and A. Edminster. 1994. "Investigation of Peak Electric Load Impacts of High SEER Residential HVAC Units". Pacific Gas and Electric Company, San Francisco, CA.

Rice, C. 1991. "The ORNL Modulating Heat Pump Design Tool – User's Guide". Prepared for the U.S. Department of Energy.

Tooley, J. Jr. and N. Moyer. 1989. "Mechanical Air Distribution and Interacting Relationships". Proceedings from Symposium on Improving Building Systems in Hot and Humid Climates, pp. A24-31. Texas A&M University, College Station, TX.

GLOSSARY

97.5% Design - ASHRAE published values for outdoor design temperature that will be exceeded on average 73 hours of the summer months (June through September).

ACCA Manual J - Residential heating and cooling load estimation methodology published by the Air Conditioning Contractors of America.

Air Changes per Hour (ACH) - The number of times that air in the house is replaced with outdoor air in one hour.

Air Handler - The fan and cabinet assembly that moves air across a heat exchanger and through a duct system.

Blower Door - A large variable speed fan fitted with flow and pressure measuring devices. It is mounted in a doorway to measure the leakage of a structure.

Capacity - The amount of heat added to (heating) or removed from (cooling) a structure by the heating or cooling equipment.

Capillary Tube - A refrigerant metering device that utilizes fixed diameter and length of tubing to control the flow of refrigerant.

CFM50 - A measurement of the house air leakage based on the air flow necessary to maintain a 50 pascal pressure differential between the house and outside.

Charge - The quantity of refrigerant in a system.

Connected Load - The amount of power draw when the unit is running continuously.

Design Cooling Load - The heat gain of a structure at the ASHRAE 97.5% design outdoor temperature and 75°F dry bulb 62°F wet bulb indoors (expressed in Btu/hr).

Diversified Peak Demand - The amount of power draw realized by the utility during their peak period for a particular end use for the customers that have that end use.

Dry Bulb Temperature - The temperature measured using a common thermometer.

Duct Blaster™ - Similar to a small blower door, this device is used to test the leakage of a duct system.

Duct Leakage (Exterior) - The leakage of the duct system to outside the structure.

Duct Leakage (Total) - The leakage of the duct system including unintentional leakage to inside and outside the structure.

Duty Cycle - The percentage of time that an end use is on during a specified period. **EER** - The Energy Efficiency Ratio. The capacity of an air conditioner (in Btu/hr) divided by the electrical input (in watt hours).

Effective Capacity - A rating of the systems true operating capacity adjusted for duct losses experienced.

Evacuation - The removal of gases from a closed refrigerant system until the pressure is below atmospheric pressure.

Evaporator - The heat exchanger (coil) in a refrigerant system that removes heat thus boiling the refrigerant.

Flow Hood - A calibrated air flow measurement device.

Glossary

Group A - The group of customers shown through Model P to have their air conditioners off during peak.

Group B - The group of customers shown through Model P to have their air conditioners cycling on and off during peak due to thermostatic control.

Group C - The group of customers shown through Model P to have their air conditioners running continuously during peak, but could be in Group B if some reduction of load or increase of effective capacity were implemented.

Group D - The group of customers shown through Model P to have their air conditioners running continuously during peak.

Half -Nelson - A methodology used to estimate the ratio between total supply leakage and total return leakage based on pressure measurements with all registers blocked.

HVAC - Heating, Ventilating and Air Conditioning.

Indoor Coil - The evaporator coil, located at the air handler, on an air conditioning system.

Latent Capacity - The amount of moisture removed by a cooling appliance.

Micron Gauge - A calibrated instrument used to measure vacuum in a closed refrigerant system.

Model P - A model that examines occupant behavior patterns to make adjustments to peak effects of various DSM options.

N factor - The infiltration/leakage coefficient. A conversion factor from blower door measured leakage(CFM 50) to modeled average infiltration rates, This factor is derived from a simplification of the LBL model.

Overcharge - The condition of an air conditioning system that has more refrigerant than is specified by the manufacturer .

Package Unit - An air conditioning system with all major components located in one cabinet.

Pascal - A small metric unit of pressure. One pascal is 0.000145 PSI.

Pressure Pan - A shallow pan placed over a supply or return grill with a blower door operating. The pressure measured at the pan is a qualitative indication of duct system leakage.

Return System - The portion of the duct system used to return air from a structure to the air handler.

Saturation - The temperature/pressure at which both the refrigerant liquid and vapor are present in equilibrium

SEER - The Seasonal Energy Efficiency Ratio, a comparative measure of an air conditioners efficiency, much like EER but rated at a much cooler outdoor temperature.

Sensible Capacity - The amount of heat added to or removed from a structure measured by dry bulb temperature.

Split System - An air conditioning system that has the condenser remotely located from the evaporator.

Static Pressure - A measure of pressure that is equally exerted in all directions within a given point of the duct system.

Glossary

Subcooling - The difference in temperature between liquid refrigerant and saturated refrigerant at the same pressure.

Superheat - The difference in temperature between refrigerant vapor and saturated refrigerant at the same pressure.

Supply System - The portion of the duct system used to deliver conditioned air from the air handler to individual rooms.

Hourly Temperature Bins - The number of hours during the season that the outdoor temperature falls within the specified range.

Thermostatic Expansion Valve (TXV) - A refrigerant metering device that adjusts the flow of refrigerant to maintain a constant superheat at the exit of the evaporator coil.

Ton of Cooling - The amount of heat required to melt a ton of ice at 32°F in one hour (12,000 Btu/hr).

Unconditioned Space - The part of a structure that is not intentionally heated or cooled by the heating or cooling equipment.

Undercharge - The condition of an air conditioning system that has less refrigerant than is specified by the manufacturer.

Weighing in Charge - A method of charging refrigerant systems by using a scale.

Wet Bulb Temperature - The temperature measured by a thermometer covered with a wet wick with air blowing across it. The measured temperature is lower than the dry bulb temperature and is a measure of moisture in the air.

APPENDIX A: SUMMARY OF RELATED STUDIES

A number of previous studies have been conducted on duct systems and air conditioners in both new construction and retrofit applications. These studies were completed by Cummings et al., Hammerlund et al., Jacobson et al., Jump and Modera, Neal, Proctor et al. (1990) and Proctor (1991). Five of these studies included field monitoring of energy usage (Cummings et al., Jacobson et al., Jump and Modera, Proctor et al. (1990) and Proctor (1991). All but one of these studies examined impacts of retrofit improvements to the air conditioners and/or duct systems on previously constructed houses, while Hammerlund et al. dealt solely with newly constructed homes.

CUMMINGS ET AL.

In a comprehensive study of 91 "typical" Florida houses Cummings et al. (1990) studied the energy effects of duct leakage. Blower door tests were performed on 63 houses to determine the impact of duct leakage on infiltration rates in the house. Duct repairs were made on 25 houses and 24 of these houses had their cooling energy usage monitored before and after the duct repairs.

Tracer gas testing found that infiltration rates for the houses were four times greater when the air handler was operating than when it was off. The average Air Changes per Hour (ACH) for the 91 houses was 0.21 with the air handler off and it increased to 0.93 when the air handler was turned on. Tracer gas testing found that the Return Leakage Fraction (RLF) averaged 10%. Thirty percent of the houses tested had an RLF of greater than 10%, with the majority of the leakage coming from unconditioned attic space.

The blower door testing performed on 63 houses indicated that on average 11.7% of the total house leakage area was located in the duct system. While the duct system accounted for less than 1% of the volume of the houses, it was determined to cause 71% of the total house infiltration when the air handler was on.

In the 25 houses that received duct sealing work, it was found that on average 16% of the blower door measured house leakage area was attributable to duct leakage. Blower door testing indicated that the retrofit duct repairs reduced the average duct leakage by 68%. Tracer gas testing determined that the return leakage fraction for these homes were reduced from an average of 16.7% to an average of 4.5%. Measured cooling energy usage showed that 22% of the cooling energy usage was attributable to the duct leakage and an 18% reduction in cooling energy usage was realized after duct repairs were performed.

Appendix A: Summary of Related Studies

HAMMERLUND ET AL.

In an extensive study of newly constructed residences in the Los Angeles area 66 apartments and 12 houses with ducted heat pump systems were examined for installation practices and system performance²². Each residence was tested for problems in three major areas; duct leakage to the exterior, air flow through the indoor coil and refrigerant charge.

Even though the residences examined were newly constructed and most had received a utility financial incentive for installation of energy efficient heat pumps, significant deficiencies were found in all three areas.

The predominate problem in single family residences was duct leakage. The blower door testing performed on these houses indicated that the vast majority of the homes had excessive duct leakage over what could be reasonably achieved. Over 85% of the houses had supply leakage in excess of 50 CFM₅₀ and 90% of the return systems had duct leakage in excess of 50 CFM₅₀. This duct leakage resulted in an increased cooling load of approximately 30%.

Low air flow through the indoor coil and incorrect charge were also found to be a problem in these residences. Only 30% of the houses tested had air flow within the manufacturers specifications for proper air flow. This low air flow made the checking of charge by manufacturers recommended procedures impossible on all but five of the houses. Of those five houses one was undercharged and the remaining four were overcharged.

The duct leakage to the exterior of the building was considerably lower on the multifamily residences tested. This was due to both shorter duct runs and lower operating pressures typical of multifamily residences. However, low air flow through the indoor coil proved to be a more serious problem in the multifamily residences tested. Less than 15% of the units tested had the correct air flow through the indoor coil. Two thirds of the heat pumps in the multifamily residences were incorrectly charged with 61% being overcharged and 8% being undercharged.

With interactive effects taken into account, the average energy savings opportunities for cooling single family residences was 38% and multifamily residences had average cooling savings opportunities of 18%.

JACOBSON ET AL.

This study of 250 single family residences evaluated the potential for implementing the lessons learned in previous Appliance DoctorTM studies to full scale production programs. The retrofit program focused on the problem areas of duct leakage to the exterior, low air flow through the indoor coil, and incorrect refrigerant charge.

²² None of the houses tested were over two years old.

Appendix A: Summary of Related Studies

The project was split into two groups of air conditioned homes; randomly selected customers and high bill complaint/high AC usage customers. Thirty of the houses were monitored pre and post retrofit to evaluate the impact of the retrofit measures.

The study design was comprised of contracting, marketing, training, diagnosis and repair, and quality assurance components.

Contracting was structured in a fixed cost performance contract with two local HVAC contractors. Job completion was based on successful completion of set criteria and payment was made after each job successfully passed a technical review process. The fixed fee contracting structure proved to work well as long as the technical process review happened in a timely fashion.

Marketing was targeted to customers that were projected to have high seasonal cooling usage based on billing history data. A "seasonal swing" algorithm was created to indicate those customers with high seasonal cooling usage. Customers were offered services at a fraction of the cost they would normally incur for the repairs and their total end cost for the service was dependent on the services received. All customers received duct sealing but, not all customers needed air flow or charge repair so the end cost to the customer was prorated based on the services received. The straight forward direct mailing piece that was mailed out resulted in all 250 slots for the project being filled within two days. A customer survey showed that customer satisfaction was high (rated 4.4 on a scale of 5) and over half of the customers felt their system was operating more efficiently and would result in lowered energy costs.

The crew configuration that worked best was a two person duct sealing crew equipped with a blower door and other diagnostic tools followed by an HVAC specialist to service the air conditioner. The testing of the systems indicated significant problems with duct system leakage.

Eighty seven percent of the high bill complaint customers had duct leakage in excess of 150 CFM₅₀ while 80% of the randomly selected had duct leakage in excess of 150 CFM₅₀. Low air flow through the indoor coil was determined to be a problem on 50% of the high bill complaint customers and 29% of the random customers. Problems with undercharged units were nearly equal (36% of the high bill complaint customers and 41% of the random customers). No overcharged units were detected in the random group while 27% of the high bill complaint group had overcharged units.

Submetering showed a cooling energy savings of 16% for the high bill complaint customers (21.5% if undercharged units are excluded) and 9% for the random customers. High usage customers proved to have a higher occurrence of problems with their systems and realized a greater benefit from the services provided. The "seasonal swing" methodology proved to be reliable at indicating customers likely to benefit from the program.

Quality assurance and training played an important role in the project and proved to be successful in providing a means for insuring quality work from HVAC technicians. The testing protocol, technical process review and prompt feedback continually improved technician performance and understanding of the program. Technical process review

A-3

Appendix A: Summary of Related Studies

and feedback were a crucial control feature of the project that were required to be delivered in a timely fashion.

JUMP AND MODERA

This study examined the combined energy effect of duct leakage retrofit repair and the application of additional duct insulation on thirty houses with attic located duct systems. The energy effects were monitored on a total of 5 houses during the summer season and 6 winter season houses. The 6 winter season houses were all equipped with electric heating systems. Short term (~ 2 week) monitoring took place for both pre and post retrofit periods.

The extensive diagnostic testing included duct leakage testing, system air flow measurement, and measurement of normal operating static pressures within the duct systems. The monitoring included temperatures throughout the duct system, attic, and outside, as well as power consumption of all significant HVAC system components.

Testing found that supply and return leakage areas were nearly equal. However the return system leakage reduction averaged 73% while the supply system leakage reduction was only reduced by 56%. The greater success in sealing the return system was attributed to the leakage being concentrated in a few sites. Overall, approximately 64% of the duct leakage was eliminated and this sealing work reduced the house leakage area by approximately 14%. Increasing the duct R-value to an R-6 on both the plenums and the individual duct runs reduced conduction losses by an average of 33%.

NEAL

Neal performed an investigation into measured system performance on ten central air conditioning systems in North Carolina. The study was designed to compare the actual performance of the equipment to the manufacturers rated performance.

This study found that on average the air conditioners were performing at 70% of rated efficiency. Four of the ten units did not have proper of air flow through the indoor coil and five of the ten were incorrectly charged. It was noted that all of the units examined had at least one efficiency or service life problem.

PROCTOR ET AL. (1990)

Pacific Gas & Electric Company sponsored an investigation of heat pump operating efficiency for high bill complaint customers in the winter of 1989. This study was designed to identify major problems existing with heat pump installations and to design a system to correct those deficiencies. The study focused on the problem areas of low air flow through the indoor coil, incorrect refrigerant charge, excessive use of back-up heat strips, other control problems, shell leakage, and duct system leakage.

The study examined 51 heat pumps in 49 houses. Each of the houses was visited by a heat pump technician that used a set procedure to diagnose and repair problems with

Appendix A: Summary of Related Studies

the heat pump. To quantify problems with the duct system and the building shell each of the houses was inspected with the use of a blower door. Three of the retrofitted houses were chosen for pre and post retrofit short term monitoring.

Technician visits identified at least one major problem in over 90% of the houses tested. Seventy three percent of these houses had received a recent visit by professional HVAC service personnel that had not found nor solved the problems identified in the study. Table A-1 lists the major problems found at the sites.

Problems	Number of Houses with Problem	Problem Solvable Through Program
Diffuse Duct Leakage > 150 CFM50 ²³	33	25
Low Air Flow	24	1924
Incorrect Charge ²⁵	16	16
Disconnected Ducts	16	14
Refrigerant Leaks	10	10
Recirculation Through Outdoor Coil	9	0
Auxiliary Heat on First Stage	3	3
House Leakier Than 0.75 ACH	15	15

Table A-1 Problems Identified by House

Savings projections indicated that duct leakage repair was the best option for lowering the customers high seasonal energy usage, followed by refrigerant charge correction, sealing of shell leakage sites , installation of auxiliary strip heat cut-outs , and correction of low air flow.

PROCTOR (1991)

A comprehensive study was commissioned by Pacific Gas & Electric Company during the summer of 1990 on 15 houses in Fresno, California to determine the potential energy and peak reduction savings of a program for residential air conditioners. During the study all houses were monitored for energy usage for a period preceding repairs and

²³ Duct leakage was measured after all disconnected ducts had been repaired.

²⁴ Low air flow on these units were caused by restrictive duct design. Modification of the duct system through adding runs or increasing duct sizing was outside the scope of this program.

²⁵ The methodology used for checking charge in this study did not indicate units that were overcharged. Additionally only units that could be brought to correct air flow were tested for charge.

Appendix A: Summary of Related Studies

after repairs. The majority of the customers selected were high bill complaint customers.

All 15 of the houses had at least one major problem with the air conditioner or the duct system. Ninety percent of the homes had duct leakage in excess of 150 CFM₅₀. Duct leakage accounted for 14.7% of the total building shell leakage area. The average cooling load increase due to the duct leakage was 25%. The average retrofit duct leakage reduction achievable was 60%, with a corresponding monitored cooling energy savings of 18%.

Sixty seven percent of the systems had low air flow through the indoor coil. Cleaning resulted in an average increase in air flow of 16%. Fifty six percent of the air conditioners had an improper level of refrigerant charge.

All of the houses in the study experienced at least a 10% reduction in monitored cooling energy usage and a number of the houses experienced savings in excess of 30%.

DUCT SEALING PEAK EFFECT STUDIES

Valid estimation of peak day electrical usage for residential air conditioners and their duct systems are intrinsically difficult due to the fact that the evaluator is trying to predict an event that occurs rarely and is usually outside the measured data set. Additionally peak usage of air conditioners is driven by numerous variables (i.e. occupant behavior, outdoor temperature, relative humidity, time of day, sky cover, etc).

Proctor (1993) examined six analytical models using submetered data from the Appliance DoctorTM Pre-Production Project to analyze the strengths and weaknesses of the models at estimating peak reduction. All six models showed consistent results that peak reduction occurred in the early evening hours (local residential distribution peak) when duct systems were sealed. Peak reduction in the early afternoon hours (system peak) could not be proven due to the small size of the sample.

Cavalli and Wyatt (1993) examined a sampling of 240 submetered air conditioners from the PG&E Model Energy Communities Project. This study was designed to determine if there was any peak effect attributable to: 1) duct sealing on residential air conditioners and 2) early replacement of air conditioners that were oversized (as determined by ACCA Manual J) and had low rated EER's (this group also received duct repairs).

The results showed negligible peak operating impact from duct sealing of 0.04 kW. Replacement of air conditioners with correctly sized more efficient air conditioners was shown to be effective at reducing the peak operating impact by approximately 1.4 kW. The authors indicate the results of their analysis is limited by the fact that the data was from a cool summer where the maximum temperature never reached 100°F.

Jacob and Zebedee (1994) examined the peak impact of duct sealing using metered data from the Florida Power Corporations duct sealing program. The analysis showed an estimated average peak demand savings of 0.5 kW.

Appendix A: Summary of Related Studies

These three studies show that there is no absolute agreement on peak reduction attributable to duct sealing alone. Together however, they support the point that duct sealing combined with sizing reductions will reduce peak.

APPENDIX B: COMBINED MODEL AND DATA SOURCES

The combined model presented in this report is composed of three primary sub-models: a duct loss model, an air conditioner performance model, and a residential air conditioner peak load model.

A schematic of these three models is shown in Figure B-1

Appendix B: Combined Model and Data Sources

DUCT LOSS MODEL

The duct loss model includes the impacts of direct leakage losses, induced building infiltration losses, and conductive losses. The model characterizes these losses as a loss of effective system capacity. The duct model also calculates return plenum temperatures and average supply air temperatures based on leakage and conduction rates and indoor and supply plenum temperatures.

The basic model including leakage and infiltration effects is the work of Palmiter (SOURCE: Palmiter and Bond, 1991). Proctor Engineering Group has added the effects of conduction and energy recovery (when supply leakage is mitigated by nearby return leaks and other recovery mechanisms) into that model.

The duct loss model is a steady state model. The losses are scaled to the duty cycle of the air conditioner for each temperature bin.

AIR CONDITIONER MODEL

The model calculates changes in capacity and efficiency due to:

- Outdoor temperature
- Refrigerant charge (capacity and efficiency generally peak at proper charge, but the effect is dependent on other variables)
- Return plenum wet bulb temperature (nearly dry coil)
- Return plenum dry bulb temperature
- Air flow across the indoor coil

The model also calculates the supply plenum air temperature based on the return plenum temperature, system capacity, and air flow rate.

The model draws on a variety of sources including:

- Laboratory tests of air conditioners with charge varied from 20% below to 20% above proper charge (SOURCE: Farazad and O'Neal, 1988 and 1989). These tests were conducted with outdoor coil inlet air temperatures from 82°F to 100°F.
- Simulation runs by Proctor Engineering Group for higher outdoor temperatures and lower indoor wet bulb conditions with MODCON, the air conditioner simulation program of Oak Ridge National Laboratory (SOURCE: Rice, 1991).
- Data gathered from major manufacturers on performance of air conditioners under nearly dry coil conditions.

The air conditioner model is a steady state model. The consumption is scaled by the duty cycle of the air conditioner for each temperature bin with an adjustment for cycling losses.

MODELED COOLING LOADS

Building shell loads for the combined energy consumption model were based on a constant temperature setting¹ of 75°F. These cooling loads (including solar gain) were assumed to increase linearly with temperature from 80°F to 106°F. The cooling load above 106°F was assumed to have a constant solar gain component and a conductive component that is linear with outdoor temperature. Building shell load was used to tune the model to match the average duty cycle of "thermostatically controlled" units in the submetered data. An alternative duty cycle 10% higher was also used to assess the sensitivity of the results to alternative cooling loads.

PEAK LOAD MODEL (MODEL P)

Model P includes all the impacts both known and unknown that effect occupant behavior to produce a given duty cycle at peak. These effects are nested in the empirical base for Model P - submetered air conditioner data from peak hours. The output from Model P is the diversified demand of the residential air conditioners under varying scenarios.

Model P divides residential air conditioners into four groups. Group A consists of air conditioners that are not operating on peak. On peak, Group B and C air conditioners cycled (Group B) or potentially cycled (Group C) by the thermostat. Group D air conditioners run constantly on peak and would do so even if substantial improvements were made in the effective capacity of the system. The breakdown of groups used in this study is shown in Figure B-2.

Figure B-2 Incidence of Model P Classes

¹For the diversified peak load model (Model P) only a portion of the units were modeled as "thermostatically controlled" (Groups B and C).

Appendix B: Combined Model and Data Sources

In addition to differences in air conditioner control, Groups A. B/C, and D have somewhat different connected loads at peak. The connected loads for this study are illustrated in Figure B-3.

Figure B-3 Connected Load by Model P Class

The output from Model P is the diversified demand of the residential air conditioners under varying scenarios. The diversified demand is calculated as the weighted² sum of the demands of the four groups. The demand of the four groups are:

- Group A air conditioners have no demand at peak
- Group B and C air conditioners have a peak demand that is dependent on the ratio of the cooling load to the effective capacity of the unit (duty cycle). Under different scenarios, the duty cycle will change. The baseline condition for this study is an underlying duty cycle for B's and C's of 67.9%. The loads for the combined model were tuned to this duty cycle so the output from that model is the peak demand for Groups B and C.
- Group D demand equals their modeled connected load. The connected load (which is dependent on outdoor temperature, return plenum temperature, refrigerant charge, and indoor coil air flow) is an output from the combined air conditioning and duct model adjusted by the relative loads illustrated in Figure B-2.

Model P was developed by Proctor Engineering Group in order to improve predictions of peak effects from alternative technological options. The data used to build Model P for this study came from three sources:

²weighted by their occurrence in the submetered data

Appendix B: Combined Model and Data Sources

- Nevada Power Company Sample #1 data from July 12 to August 20, 1992 for 40 primary air conditioners (the second unit in two air conditioner households was not metered) for customers participating in a load management program.
- Nevada Power Company Sample #2 data for 78 primary and secondary air conditioners begun in the summer of 1994. These customers also participate in a load management program.
- EPRI Center for Electric End-Use Data Sample #3 data for 136 air conditioners located near 18 different weather stations in hot climates. These customers do not participate in a load management program.

The duty cycles for Groups B and C from the submetered data are distributed as shown in Figure B-4.

Figure B-4 Duty Cycle of Submetered Sample and Underlying Duty Cycle

The duty cycling rates for Groups B and C were used to estimate an underlying mean and standard deviation for a "normal" distribution that would approximate the observed duty cycles. The underlying mean for the baseline case was .679. The real duty cycle cannot exceed 1.0 (units that would have a duty cycle of greater than 1.0 are Group C) and therefore the "normal" curve is constrained to no greater than 1.0 giving a spike at that point. Reductions in load or increases in effective capacity will shift this distribution to the left, reducing the mean duty cycle and decreasing the percentage of units in Group C. The shift in the duty cycle distribution for Groups B and C is calculated using the combination duct/AC model.

APPENDIX C: COMBINED MODEL INTERACTIONS

The combined model presented in this report is composed of three sub-models. When the models are combined, certain interactions occur as outputs from one model are input to the others and vice-versa. These interactions can lead to some unanticipated impacts.

The primary physical connections between the duct and air conditioner models are the return plenum temperature, the supply plenum temperature, the air conditioner capacity, and the duty cycle.

Some examples of temperature-related interactions include:

- Return duct leakage and conduction increase the return plenum temperature, which increases air conditioner capacity and watt draw;
- Correcting improper refrigerant charge increases air conditioner capacity leading to lower supply air temperatures (at a given air flow rate) and increased conductive heat gain to the supply ducts.

These duct temperature interactions tend to result in relatively small impacts because the temperature ranges are fairly narrow.

The duct and air conditioner models interact in significant ways because the primary duct losses occur when the system is operating. Therefore, factors which affect how much the system must operate to meet building loads can have a large impact on the relative system efficiency losses.

DISTRIBUTION SYSTEM LOSSES

The distribution system losses on these homes are quite significant. For the average home in this sample the distribution losses increase from near 25% at 80°F to over 48% of the capacity of the unit at peak temperatures. Distribution losses are plotted against outside temperature in Figure C-1.

Figure C-1 Distribution Loss for Average Unit

94.114 Appendix C: Combined Model Interactions

Components of the distribution loss are supply leakage, return leakage, induced infiltration, and conduction. Each of these components has a different response to outside temperature as shown in Figure C-2. The capacity loss as a result of supply leaks is constant regardless of the outside temperature. On the other hand both induced infiltration and conduction losses increase dramatically with increases in outside temperature.

Figure C-2 Effect of Outdoor Temperature on Duct Loss Components

Appendix C: Combined Model Interactions

94.114

Reducing duct leakage or increasing the insulation levels on the ducts reduces the duct loss at all temperatures. Figure C-3 shows the effect of improved duct systems on the average home in this sample. The effective capacity of the air conditioning system is greatly improved by these changes, making a reduced capacity air conditioner a viable option on a home with well sealed and insulated ducts.

Figure C-3 Effect of Reduced Duct Leakage and Increased Duct Insulation

EFFECT OF AIR CONDITIONER SIZING

The duct and air conditioner models interact in significant ways because the primary duct losses occur when the system is operating. Therefore, factors which affect how much the system must operate to meet building loads can have a large impact on the relative system efficiency losses.

The first effect of properly sizing an air conditioner to the load is that units previously running continuously at peak (about 27% of the units) will now draw less power. The second effect of using a smaller unit is more surprising. If a smaller air conditioner is installed in place of a unit that was cycling on peak and the same duct system is used, the relative conductive loads increase and both energy consumption and peak demand increase. The increase in distribution loss from sizing alone is illustrated in Figure C-4. When smaller sized air conditioners are used either the duct system area must be reduced or the R value increased. Smaller diameter duct systems would continue to promote low flow problems, so shorter runs and higher insulation values are recommended.

Figure C-4 Effect of Reduced AC Size on Conduction Losses (duct size held constant)

Appendix C: Combined Model Interactions

REFRIGERANT CHARGE EFFECT

Properly charging an air conditioner increases its capacity by increasing the temperature drop across the indoor coil. Therefore, duct leakage and conduction losses are both reduced. Undercharged and overcharged systems have different characteristics. At high ambient temperatures (110°F) undercharged systems perform well, having comparable capacity and somewhat higher efficiency than properly charged systems. At moderate temperatures undercharged systems suffer from large capacity and efficiency losses. At all temperatures, undercharged systems draw less power than properly charged systems. Therefore, nearly all of the benefits from avoiding undercharged systems arise as energy savings at moderate temperatures. In contrast, overcharged systems always perform worse than properly charged systems.

The modeled kW draw of an average home with an overcharged unit and a properly charged unit is shown in Figure C-5.

Figure C-5 Effect of Overcharge on Power Draw - Effectively Oversized Unit

APPENDIX D: SAMPLE VARIABILITY AND OVERALL UNCERTAINTY

The variability within the project sample can be assessed through standard statistical techniques. The main body of the report shows 95% confidence intervals on the energy and demand savings for each program design option. These confidence intervals are calculated from the variability in the model results within the sample of units modeled. They do not account for any of the fundamental uncertainty in the measuring or modeling of the units as described below – i.e., the measurements, modeling, and assumptions for each house are assumed to be accurate. These confidence intervals should only be interpreted as representing sample variability, not overall uncertainty in the results.

The energy usage and peak demand levels and the impacts of proposed retrofits estimated in this report are based on a combination of field measurements, assumptions, load data sets, and models. Each of these underlying quantities and relationships are, in one sense or another, estimates of actual physical characteristics and relationships between duct systems, air conditioners, building shells, and occupants. Some of these quantities, such as particular pressure or flow measurements, could have uncertainties assigned to them. However, much more of the overall uncertainty is likely due to assumptions made in lieu of measured data.

Many of the key assumptions are stated in the report, such as the simplifications embedded in the air conditioner and duct models and the characterization of occupant behavior. Some of the uncertainty introduced from these assumptions could be reduced by collecting additional data (e.g., load research data from a random sample of new homes, air conditioner performance data over a wider range of charge, air flow, and temperature conditions). This type of information would likely lead to less uncertainty with fewer assumptions. However, in order to properly assess overall accuracy, a model validation study is needed. Without such a study, the uncertainty introduced by modeling assumptions and simplifications can not be assessed in any reasonable and defensible manner. Instead, one must conclude that the results presented are correct to the extent that the measurements are accurate, the model is correct, and its assumptions are satisfied.

APPENDIX E: ESTIMATED PROGRAM IMPACTS AND COSTS

SUMMARY INFORMATION: HIGHER COOLING LOADS

Table E-1Without ResizingBuilding Loads tuned to underlying duty cycle of metered sample @112F + 0.1

			Sav	ings	
	Direct Cost	Ene	ergy	Peak D	emand
Program Design		kWh	%	kW	%
			(95%CI)		(95%CI)
Baseline - Systems as Found	\$0	2948		3.18	
A. Restrict Duct Lkg to 75 CFM25 total	\$95	544	18%	0.45	14%
			(±4.5%)		(±2.7%)
B. Duct Lkg 75, R-8 Duct Insul.	\$235	769	26%	0.67	21%
			(±5.3%)		(±3.3%)
C. Correct AC Charge & Flow	\$68	364	12%	0.03	1%
			(±2.9%)		(±3.1%)
D. Charge, Flow, Duct Lkg 75	\$163	870	30%	0.54	17%
			(±5.6%)		(±4.4%)
E. Charge, Flow, Duct 75, R-8	\$303	1034	35%	0.71	22%
			(±6.1%)		(±4.7%)
F. EER 2 higher, Charge, Flow	\$418	827	28%	0.60	19%
			(±3.8%)		(±3.4%)
G. All of the Above	\$653	1377	47%	1.16	36%
			(±6.8%)		(±5.1%)
H. Shade Windows	N/A	348	12%	0.19	6%
			(±1.1%)		(±1.2%)
I. Shade + All of the Above	\$653+	1578	54%	1.29	41%
			(±7.2%)		(±5.4%)

Table E-2

Units Resized based on Manual J tuned to average duty cycle of 1/1.35 @ Design Building Loads tuned to underlying duty cycle of metered sample @112F + 0.1

			Sav	vings	
	Direct Cost	Ene	rgy	Peak D	emand
Program Design		kWh	%	kW	%
			(95%CI)		(95%CI)
Baseline - Systems as Found	\$0	2948		3.18	
A. Restrict Duct Lkg to 75 CFM25 total	\$95	410	14%	0.70	22%
			(±4.6%)		(±3.0%)
B. Duct Lkg 75, R-8 Duct Insul.	\$235	691	23%	1.04	33%
			(±5.1%)		(±3.4%)
C. Correct AC Charge & Flow	\$68	281	10%	0.28	9%
			(±2.9%)		(±3.4%)
D. Charge, Flow, Duct Lkg 75	\$163	705	24%	0.87	27%
			(±5.4%)		(±4.2%)
E. Charge, Flow, Duct 75, R-8	\$303	944	32%	1.18	37%
			(±5.9%)		(±4.6%)
F. EER 2 higher, Charge, Flow	\$418	758	26%	0.80	25%
			(±3.8%)		(±3.8%)
G. All of the Above	\$653	1303	44%	1.54	48%
			(±6.6%)		(±5.1%)
H. Shade Windows	N/A	262	9%	0.39	12%
			(±1.5%)		(±2.0%)
I. Shade + All of the Above	\$653+	1487	50%	1.72	54%
			(±6.9%)		(±5.3%)

See the following pages for detailed information on each program design

SUMMARY INFORMATION: LOWER COOLING LOADS

Table E-3

Without Resizing

Building Loads tuned to underlying duty cycle of metered sample @ 112 F

			Sav	rings	
	Direct Cost	Ene	ergy	Peak D	emand
Program Design		kWh	%	kW	%
			(95%CI)		(95%CI)
Baseline - Systems as Found	\$0	2588		2.99	
A. Restrict Duct Lkg to 75 CFM25 total	\$95	497	19%	0.46	15%
			(±4.9%)		(±2.8%)
B. Duct Lkg 75, R-8 Duct Insul.	\$235	696	27%	0.65	22%
			(±5.8%)		(±3.6%)
C. Correct AC Charge & Flow	\$68	327	13%	0.03	1%
			(±3.0%)		(±2.9%)
D. Charge, Flow, Duct Lkg 75	\$163	785	30%	0.53	18%
			(±5.9%)		(±4.5%)
E. Charge, Flow, Duct 75, R-8	\$303	927	36%	0.68	23%
			(±6.5%)		(±4.9%)
F. EER 2 higher, Charge, Flow	\$418	732	28%	0.56	19%
			(±3.9%)		(±3.2%)
G. All of the Above	\$653	1225	47%	1.09	36%
			(±7.1%)		(±5.3%)
H. Shade Windows	N/A	310	12%	0.18	6%
			(±1.1%)		(±1.1%)
I. Shade + All of the Above	\$653+	1400	54%	1.21	40%
			(±7.5%)		(±5.5%)

Table E-4

Units Resized based on Manual J tuned to average duty cycle of 1/1.35 @ Design Building Loads tuned to underlying duty cycle of metered sample @ 112 F

				inco	
			Sav	ings	
	Direct Cost	Ene	ergy	Peak D	emand
Program Design		kWh	%	kW	%
_			(95%CI)		(95%CI)
Baseline - Systems as Found	\$0	2588		2.99	%
A. Restrict Duct Lkg to 75 CFM25 total	\$95	316	12%	0.75	25%
			(±4.9%)		(±3.3%)
B. Duct Lkg 75, R-8 Duct Insul.	\$235	591	23%	1.08	36%
		_	(±5.3%)		(±3.8%)
C. Correct AC Charge & Flow	\$68	203	8%	0.36	12%
			(±3.0%)		(±3.6%)
D. Charge, Flow, Duct Lkg 75	\$163	583	23%	0.90	30%
			(±5.6%)		(±4.4%)
E. Charge, Flow, Duct 75, R-8	\$303	816	32%	1.21	40%
			(±6.1%)		(±4.8%)
F. EER 2 higher, Charge, Flow	\$418	631	24%	0.83	28%
			(±3.8%)		(±4.0%)
G. All of the Above	\$653	1134	44%	1.53	51%
			(±6.8%)		(±5.2%)
H. Shade Windows	N/A	179	7%	0.45	15%
			(±1.7%)		(±2.3%)
I. Shade + All of the Above	\$653+	1295	50%	1.68	56%
l			(±7.2%)		(±5.5%)

I	H	ouse	Cons	stants	s		Pre-Retrofit Site Data													Results - Pre Retrofit				
								l I	Ducts				A	ir Cor	ndition	er	Shell		Energ	y	Pe	ak De	mand	
	Load	Du	ict Loc	ation I	nfo	Leakag	e-Oper	Lea	akag o @5	50	Cond	uction	Rati	ngs	AirFlow	Charge	Leakage	Usa	ge & Duc	t Loss	kW @5	PM	3.18	
ID	ManJsh	Rint	Rbuf	Sint	Sbuf	sif1	rlf1	Q50Dt1	Q50De1	Dlkpct1	UAr1	UAs1	Capr1	EERr1	Qah1	Cha1	Q50S1	Use1	Leaks1	Total1	kW1	DikW1	CapaPk1	
1	23329	0.0	1.0	0.4	1.0	0.130	0.076	631	424	18%	12.5	64.5	46500	9.0	1588	1.00	2400	2995	29.3%	39.7%	5.71	4.20	17062	
2	20420	0.0	1.0	0.4	1.0	0.073	0.106	402	334	18%	12.5	73.5	46000	9.4	1468	0.80	1825	2895	25,6%	39.6%	5,01	2.79	19729	
3	12811	0.0	1.0	0.8	1.0	0.059	0.112	351	230	12%	12.5	15.5	28000	9.0	1229	1.00	1950	1386	23.7%	28.9%	3.81	1.79	14685	
4	15557	0.0	1.0	0.0	1.0	0.062	0.039	291	213	11%	12.5	85.0	34000	9,1	1321	0.80	1950	2313	18.0%	39.0%	3,96	2.28	14516	
5	20389	0.0	1.0	0.4	1.0	0,068	0.036	3/1	265	16%	12.5	69.0	46000	8,9	1586	1.00	1635	2240	15./%	27.6%	5,64	2.86	21635	
6	22482	0.0	1.0	0.6	1.0	0.062	0.049	408	267	1/%	12.0	46.0	46000	8,9	1012	1.00	1000	2354	10,0%	24.3%	5,69	2.94	23466	
;;	22000	0.0	1.0	0.0	1.0	0.078	0.027	305	213	10%	12.0	00.0	42000	9.0	1005	0.00	1700	3391	21 19/	39.47	4.00	3.39	10714	
- 0	22433	0.0	1.0	0.1	1.0	0.090	0.052	470	200	21%	12.0	76.2	42500 59500	0,9	1200	1.20	1050	3330	17.0%	39.270	7.09	4.99	21502	
10	10/07	0.0	1.0	0.5	1.0	0.070	0.037	2/3	210	21/0	12.5	77.5	33000	0.0	785	1.20	2825	2812	30.0%	48.6%	7.00	3.43	21093	
11	16661	0.0	1.0	0.0	1.0	0.189	0.128	266	251	9%	12.5	77.5	28200	9.0	751	1.00	2825	2864	37 9%	58.0%	3 29	3 29	5372	
12	21048	0.0	1.0	1.0	0.0	0.023	0.121	219	153	6%	12.5	0.0	37000	9.0	1053	0.80	2400	2342	17 7%	19.7%	4 11	2.11	21998	
13	16042	0.0	1.0	0.0	1.0	0.150	0.111	516	389	16%	12.5	70.0	28200	8.9	813	1.00	2400	2477	32.6%	51.1%	3.37	3.37	7150	
14	17877	0.0	1.0	0.0	1.0	0.070	0.067	293	181	16%	12.5	77.5	35000	9.4	1491	0.80	1125	2663	24.0%	41.5%	4.13	2.65	15012	
15	12675	0.0	1.0	0.1	1.0	0.043	0.020	152	101	10%	12.5	63.0	35000	9.4	1429	0.80	1000	1562	12.0%	28.0%	3,98	1.48	18337	
16	17956	0.0	1.0	1.0	0.0	0.162	0.173	503	296	13%	12.5	0.0	35800	9.4	742	1.20	2300	2367	35.3%	37.2%	3.82	3.24	11380	
17	17956	0.0	1.0	0.0	1.0	0.098	0.043	234	156	7%	12.5	85.0	35800	9.4	753	0.80	2300	2776	19.5%	44.4%	3.49	2.81	12021	
18	17996	0.0	1.0	1.0	0.0	0.051	0.117	362	199	8%	12.5	0.0	35800	9.4	1082	1.20	2350	1970	20.6%	22.5%	4.17	2.50	16199	
19	17996	0.0	1.0	0.0	1.0	0.080	0.036	243	148	6%	12.5	85.0	35800	9.4	1126	0.80	2350	2650	19.2%	40.8%	3.80	2.65	13919	
20	37036	0.0	1.0	0.5	1.0	0.108	0.069	502	276	15%	12.5	65.0	59000	9.7	1081	1.20	1830	4514	20.7%	32.8%	5.88	5.88	19201	
21	35143	0.0	1.0	0.0	1.0	0.158	0.056	473	303	12%	12.5	107.5	56900	9.3	1095	1.20	2500	5456	27.6%	46.1%	5.97	5.97	12904	
22	30551	0.0	1.0	0.5	1.0	0.128	0.053	472	283	15%	12.5	53.8	58500	9.9	1225	1.20	1900	3773	23.9%	33.7%	5.86	5.10	18898	
23	23692	0.0	1.0	0.0	1.0	0.155	0.052	341	240	14%	12.5	92.5	42000	9.3	958	1.20	1725	3893	28.8%	49.0%	4.53	4.53	8659	
24	25671	0.0	1.0	0.5	1.0	0.058	0.085	472	269	14%	12.5	_ 57.5	46000	9.4	1371	1.00	1900	2622	17.3%	27.7%	5.21	3.33	21632	
25	23962	0.0	1.0	0.0	1.0	0.240	0.171	590	504	30%	12.5	107.5	46000	9.0	1310	1.20	1700	5667	51.4%	67.7%	5.58	5.58	3332	
26	17876	0.0	1.0	1.0	0.0	0.052	0.302	337	292	13%	12.5	0.0	37000	9.0	910	1.20	2250	2284	33.0%	34.6%	4.41	3.11	13643	
27	10436	0.0	1.0	0.0	1.0	0.135	0.102	216	190	8%	12.5	70.0	21600	9.0	606	1.20	2250	2091	31.6%	57.8%	2.56	2.56	3073	
28	30475	0.0	1.0	0.0	1.0	0.073	0.035	507	250	12%	12.5	130.0	56500	9.0	1170	1.20	2050	4324	14.1%	36.8%	6.17	6.17	16426	
29	26/00	0.0	1.0	0.0	1.0	0.069	0.042	265	148	10%	12.5	122.5	56500	9.0	9/5	1.20	1500	3769	13.1%	36.2%	5.99	5.23	16459	
30	22440	0.0	1.0	0.0	1.0	0.070	0.049	396	22/	13%	12.0	107.5	50000	9.9	1187	0.80	1800	2998	16.5%	38.0%	4.74	2.91	19699	
31	29625	0.0	1.0	0.0	1.0	0.111	0.044	432	311	1270	12.5	100.0	42000	9.7	1493	1.20	2700	4110	10.4%	39.9%	0.24	0.08	10360	
32	16670		1.0	0.0	1.0	0.072	0.030	207	220	0%	12.5	14.0	37000	9.3	11/5	1.20	2400	3200	20.5%	37.1%	5.04	4.75	15000	
33	16670	0.0	1.0	0.0	1.0	0.031	0.112	205	320	13%	12.5	92.5	37000	9.0	1143	1.20	2400	2409	20.5%	46.6%	4.52	2.50	10705	
25	24282	0.0	0.0	1.0	0.0	0.100	0.070	040	620	23%	12.5	0.0	40000	8.0	1376	1.00	2700	2801	25 5%	26.0%	5 41	4.02	17610	
36	17068	0.0	1.0	-00	1.0	0.022	0.079	233	165	6%	12.5	77.5	28000	9.0	876	1.00	2700	2382	24.8%	45.4%	3 38	3 38	8457	
37	21511	0.0	0.0	1.0	0.0	0.021	0 186	305	190	7%	12.5	0.0	34000	9.1	1084	0.80	2600	2117	8.2%	9.3%	3.86	1.98	22597	
38	25307	0.0	1.0	- 0.0	1.0	0.051	0.085	267	185	7%	12.5	77.5	40000	8.8	1033	1.20	2600	3430	16.3%	34 0%	4 70	4,70	13180	
39	19163	0.0	1.0	1.0		0.034	0.133	259	150	5%	12.5	0.0	40000	9.0	1015	1.20	2850	2095	17.6%	19.3%	4 66	2.60	18505	
40	16768	0.0	1.0	0.0	1.0	0.045	0.053	166	106	4%	12.5	85.0	35000	9.0	694	0.80	2850	2448	11.6%	38.0%	3,53	2.37	13427	
Mean	21519	0.0	1.0	0.3	0.8	0.090	0.093	369	254	12%	12.5	65.8	41278	9.2	1160	1.04	2132	2948	22,6%	37.0%	4.68	3.63	14905	

E-3

	Retrof	its: Du	uct@25	Shade	Rduct		Sizing	dEER	Qahpt	<)		Progro	ım De	isign A	ι								
			75	No	4		Same	0	Same	None													
				Pos	st-Re	trofit	Site [Data					Resi	ults - I	Post R	letrofi	t 🔤			Sav	ings		
			Duc	cts			Α	ir Cor	ndition	ər	Shell		Energ	y	Pea	ak Der	nand		Energ	IV.	Pea	ik Dem	land
	Leakage	- Oper	Leaka	ун @50	Cond	uction	Rati	ngs	AirFlow	Charge	Leakage	Usa	ge & Duc	t Loss	kW @5	PM	2.73	U	age & Du	ct Loss	kW @5	PM	0.45
Site ID	slf2	rlf2	Dlkpct2	Dikred%	UAr2	UAs2	Capr2	EERr2	Qah2	Cha2	Q50S2	Use2	Leaks2	Total2	kW2	DikW2	CapaPk2	kWł	Leaks	Total	kW	DikW	CapaPk
1	0.024	0.014	3.8%	81%	12.5	64.5	46500	9.00	1588	1	2055	2131	5.8%	17.4%	5.56	2.50	25930	8	4 23.5%	22.3%	0.15	1.70	-8869
2	0.021	0.031	6.2%	71%	12.5	73.5	46000	9.43	1468	0.8	1589	2260	8.0%	23.5%	4.88	2.05	24624	6	5 17.5%	16.0%	0.13	0.74	-4895
3	0.020	0.037	4.3%	66%	12.5	15.5	28000	8.97	1229	1	1/9/	1131	8.5%	14.2%	3.66	1.32	18067	2	5 15.2%	14.7%	0.15	0.48	-3382
4	0.025	0.016	4.7%	60%	12.5	60.0	34000	9.09	1321	0.8	1823	1963	7.5%	29.4%	3.91	1.84	1/05/	- 3	9 10.5%	9.6%	0.05	0.44	-2540
6	0.022	0.014	5.7%	71%	12.5	46.0	46000	8.90	1612	1	1454	2027	4.8%	13.5%	5.50	2.29	25599		3 10.07	10.0%	0.00	0.57	-3905
7	0.025	0.009	5.3%	68%	12.5	100.0	42000	9.00	1345	0.8	1296	2863	5.9%	28.3%	4 63	2.00	20332	5	9 12 1%	11 1%	0.03	0.50	-4133
. 8	0.031	0.018	6.3%	66%	12.5	90.0	42500	8.91	1285	1.2	1516	2759	7.5%	26.6%	5.05	3.61	16344	5	7 13.7%	12.5%	0.06	1.37	-3964
9	0.018	0.014	6.4%	75%	12.5	76.3	58500	8.76	1681	1.2	1637	3391	4.7%	17.3%	6.98	4.10	26789	6	1 13.2%	12.4%	0.10	1.33	-5196
10	0.067	0.068	3.8%	51%	12.5	77.5	33000	9.00	785	1	2717	2312	15.4%	35.9%	3.69	3.11	12204	5	14.6%	12.7%	0.05	0.64	-3151
11	0.083	0.057	4.1%	56%	12.5	77.5	28200	9.00	751	1	2685	2116	18.0%	40.5%	3.23	2.99	9361	7.	9 20.0%	17.4%	0.06	0.30	-3989
12	0.013	0.065	3.5%	46%	12.5	0.0	37000	9.00	1053	0.8	2329	2151	9.9%	12.0%	4.04	1.91	23514	1	1 7.8%	7.7%	0.07	0.20	-1516
13	0.034	0.025	4.2%	77%	12.5	70.0	28200	8.92	813	1	2100	1690	8.1%	29.2%	3.29	2.12	12152	7	6 24.6%	21.9%	0.09	1.25	-5002
14	0.028	0.027	7.2%	60%	12.5	77.5	35000	9.36	1491	0.8	1016	2190	10.1%	28.8%	4.04	2.06	18416	4	3 13.9%	12.7%	0.09	0.59	-3405
15	0.033	0.016	8.0%	22%	12.0	63.0	35000	9.30	1429	1.0	9//	1000	9.3%	20.0%	3.97	1.41	19038		0/ 2.0%	2.5%	0.01	0.07	-/00
10	0.030	0.041	3.5%	50%	12.0	85.0	35800	9.40	753	0.8	2074	2422	9.276	35.0%	3.75	2 2 2 2	1/4//		9 20.1%	23.9%	0.07	1.30	-0098
18	0.016	0.038	2.9%	67%	12.5	0.0	35800	9.40	1082	1.2	2216	1683	7.1%	9.1%	4 07	1.96	19410	2	13.5%	13.4%	0.01	0.40	-2110
19	0.039	0.017	3.2%	52%	12.5	85.0	35800	9.40	1126	0.8	2274	2303	9.5%	32.0%	3.78	2.19	16327	3	7 9.7%	8.8%	0.03	0.45	-2408
20	0.025	0.016	4.0%	77%	12.5	65.0	59000	9.69	1081	1.2	1619	3754	5.1%	18.2%	5.85	4.57	24817	7	9 15.6%	14.6%	0.03	1.31	-5617
21	0.039	0.014	3.3%	75%	12.5	107.5	56900	9.27	1095	1.2	2272	4188	7.1%	27.5%	5.95	5.46	20080	12	9 20.5%	18.6%	0.03	0.51	-7177
22	0.032	0.013	4.2%	75%	12.5	53.8	58500	9.87	1225	1.2	1688	2999	6.2%	16.8%	5.82	3.60	25683	7	4 17.7%	16.9%	0.03	1.50	-6786
23	0.053	0.018	5.3%	65%	12.5	92.5	42000	9.31	958	1.2	1568	3005	10.3%	32.2%	4.50	4.10	13666	8	8 18.5%	16.8%	0.03	0.44	-5007
24	0.015	0.021	3.9%	75%	12.5	57.5	46000	9.43	1371	1	1698	2242	4.6%	15.8%	5.10	2.64	25715	3	0 12.8%	11.9%	0.11	0.69	-4083
25	0.048	0.034	7.7%	80%	12.5	107.5	46000	9.00	1310	1.2	1297	3081	11.8%	32.5%	5.37	4.18	15452	25	39.5%	35.1%	0.21	1.40	-12121
20	0.018	0.105	4.9%	00%	12.5	70.0	37000	9.00	910	1.2	2000	1676	12.0%	14.5%	4.20	2.13	18196		5 12.6%	11.5%	0.16	0.98	-4553
28	0.073	0.003	3 1%	77%	12.5	130.0	56500	9.00	1170	1.2	1858	3755	34%	27.2%	6 15	4 90	20092		S 10.8%	9.6%	0.03	1 27	- 1651
29	0.031	0.019	4.6%	56%	12.5	122.5	56500	9.00	975	1.2	1417	3440	5.9%	29.9%	5.98	4.53	18739	3	9 7.2%	6.3%	0.01	0.70	-2279
30	0.021	0.015	4.1%	70%	12.5	107.5	50000	9.90	1187	0.8	1641	2563	5.1%	27.8%	4.71	2,38	23183	4	5 11.5%	10.2%	0.03	0.52	-3484
31	0.030	0.012	3.4%	73%	12.5	115.0	59000	9.69	1493	1.2	2474	3298	6.3%	25.1%	6.19	4.23	22659	8	8 16.1%	14.9%	0.05	1.86	-6299
32	0.032	0.017	4.7%	56%	12.5	100.0	42000	9.31	1515	1.2	1699	2797	8.2%	27.9%	4.99	3.76	16249	4	3 10.0%	9.2%	0.05	0.99	-3035
33	0.023	0.051	4.4%	55%	12.5	14.0	37000	9.00	1145	1.2	2280	1731	9.8%	14.8%	4.43	2.07	18507	2	7 10.7%	10.4%	0.09	0.48	-2607
34	0.039	0.023	4.4%	70%	12.5	92.5	37000	9.00	1142	1	2176	1775	8.8%	29.0%	4.34	2.25	16174	6	3 19.3%	17.5%	0.08	1.43	-5380
35	0,003	0.049	3.6%	87%	12.5	0.0	40000	8.85	1376	1.2	2158	2165	1.8%	2.8%	4.97	2.41	24065	7	23.6%	23.4%	0.44	1.62	-6454
36	0.054	0.040	3.2%	50%	12.5		28000	8.97	876	1	2618	2016	13.0%	34.9%	3.33	2.75	10882	3	6 11.8%	10.5%	0.05	0.63	-2425
37	0.008	0.072	3.0%	61%	12.5	0.0	34000	9.09	1084	8.0	2483	2014	3.3%	4.5%	3.76	1.81	23441		4.9%	4.8%	0.10	0.17	-844
38	0.023	0.037	3.3%	50%	12.5	11.5	40000	0.00	1033	1.2	2490	1200	1.5% g /o/	20.2%	4.00 / K0	4.07	20761		6 0.9%	0.10%	0.05	0.04	-2078
40	0.032	0.038	2.5%	29%	12.5	85.0	35000	9.00	694	0.8	2819	2346	8.3%	35.2%	3.52	2.24	14031	1	1 3.3%	2.8%	0.08	0.37	-2200
	0.031	0.031	4 4%	63%	12.5	65.8	41278	9.16	1160	1.0	1960	2404	8.3%	23.7%	4.60	2.84	18924	5	4 14 4%	13.3%	0.08	0.78	-4010
	0.001	0.001	-71-770	50,0									0.075				%chapap	19.4	62 69/	26.0%	0.00	0.10	

E-4

94.114

	1113. 00	JCt@25	Shade	Rduct		Sizing	deer	Qahpt	Chg Fi	<		Progra	am De	sign B								
		75	No	8		Same	0	Same	None					_								
			Po	st-Re	trofit	Site D	Data					Res	ults - F	Post R	etrofi	t			Sav	ings		
		Duc	cts			A	ir Cor	dition	er	Shell		Energ	У	Pea	ak Der	nand		Energ	у	Pea	ak Den	nand
Leakag	e- Oper	Leakag	je @50	Cond	uction	Rati	ngs	AirFlow	Charge	Leakage	Usa	ge & Duc	t Loss	kW @5	PM	2.51	Usa	ge & Duc	t Loss	kW @5	5PM	0.67
Site ID sif2	rif2	Dlkpct2	Dikred%	UAr2	UAs2	Capr2	EERr2	Qah2	Cha2	Q50S2	Use2	Leaks2	Total2	kW2	DikW2	CapaPk2	kWh	Leaks	Total	kW	DIKW	CapaPk
1 0.024	4 0.014	3.8%	81%	6.3	32.3	46500	9.00	1588	1	2055	1996	5.8%	11.7%	5.556	2.27	28558	999	23.5%	28.0%	0.154	1.94	-11496
2 0.021	0.031	6.2%	71%	6.3	36.8	46000	9.43	1468	0.8	1589	2059	8.0%	16.0%	4.869	1.83	27564	836	17.5%	23.6%	0.142	0.96	-7835
3 0.020	0.037	4.3%	66%	6.3	7.8	28000	8.97	1229	1	1/97	1097	8.6%	11.4%	3.65	1.25	18885	289	15.2%	17.5%	0.164	0.54	-4200
4 0.025	0.016	4./%	60%	6.3	42.5	34000	9.09	1521	0.8	1823	1709	7.5%	18.8%	3,904	1.55	20266	003	10.5%	20.2%	0.055	0.74	-5/49
<u> </u>	2 0.011	5.0%	710/	6.0	34.5	46000	9.90	1612		1404	1022	3.1%	0.2%	5,500	2.00	20300	444	11 2%	15 10/	0.000	0.00	-6750
7 0.025	5 0.014	5 3%	68%	6.3	50.0	42000	0,90	13/5	08	1206	2496	4.0%	17 5%	4 62	2.20	24155	806	12 1%	21 0%	0.030	1 12	-7441
8 0.031	1 0.003	6.3%	66%	6.3	45.0	42500	8.91	1285	1.2	1516	2458	7.5%	17.3%	5.044	2.99	19724	878	13.7%	21.8%	0.068	2.00	-7345
9 0.018	3 0.014	6.4%	75%	6.3	38.1	58500	8.76	1681	1.2	1637	3160	4.7%	11.1%	6.973	3.68	29841	892	13.2%	18.6%	0.103	1.75	-8248
10 0.067	7 0.068	3.8%	51%	6.3	38.8	33000	9.00	785	1	2717	2022	15.4%	26.1%	3.687	2.50	15152	792	14.6%	22.5%	0.057	1.25	-6098
11 0.083	3 0.057	4.1%	56%	6.3	38.8	28200	9.00	751	1	2685	1808	18.0%	29.8%	3.225	2.29	12210	1057	20.0%	28.2%	0.065	1.00	-6838
12 0.013	3 0.065	3.5%	46%	6.3	0.0	37000	9.00	1053	0.8	2329	2130	9.9%	11.0%	4.033	1.89	23768	213	7.8%	8.8%	0.072	0.22	-1770
13 0.034	4 0.025	4.2%	77%	6.3	35.0	28200	8.92	813	1	2100	1483	8.1%	19.0%	3.281	1.73	14870	994	24.6%	32.1%	0.093	1.64	-7720
14 0.028	3 0.027	7.2%	60%	6.3	38.8	35000	9.36	1491	0.8	1016	1944	10.1%	19.7%	4.033	1.77	21350	719	13.9%	21.8%	0.1	0,88	-6338
15 0.033	3 0.016	8.0%	22%	6.3	_31.5	35000	9.36	1429	0.8	977	1363	9.4%	17.6%	3.958	1.25	21518	199	2.6%	10.4%	0.019	0.23	-3181
16 0.038	3 0.041	3.3%	77%	6.3	0.0	35800	9.40	742	1.2	2074	1672	9.2%	10.3%	3.749	1.92	17752	695	26.1%	27.0%	0.069	1.33	-6372
17 0.049	0.022	3.5%	50%	6.3	42.5	35800	9.40	753	0.8	2223	2050	10.0%	23.7%	3.474	1.88	17499	726	9.5%	20.7%	0.015	0.93	-5478
18 0.016	0.038	2.9%	6/%	6.3	0.0	35800	9.40	1082	1.2	2216	1004	1.2%	8.2%	4.059	1.93	19684	303	13.5%	14.3%	0.114	0.5/	-3485
19 0.039	0.017	3.2%	770/	0.3	42.0	35800	9.40	1091	0.8	1610	2409	9.5%	11 0%	5.77	1.03	19002	1016	9.7%	19.7%	0.033	1 70	-3003
20 0.025	0.010	4.0%	75%	6.3	52.0	56000	9.09	1001	1.2	2272	3723	7 1%	17.8%	5.052	4.10	2/049	1722	20.5%	28.3%	0.020	1.70	-0440
22 0.033	0.014	A 2%	75%	63	26.9	58500	9.87	1225	12	1688	2828	6.2%	11.6%	5.82	3.30	28044	945	17 7%	22.5%	0.038	1.40	-9147
23 0.052	0.018	5.3%	65%	6.3	46.3	42000	9.31	958	12	1568	2622	10.3%	21.7%	4.5	3.26	17161	1270	18.5%	27.3%	0.034	1.00	-8502
24 0.015	5 0.021	3.9%	75%	6.3	28.8	46000	9.43	1371	1	1698	2107	4.6%	10.3%	5.095	2.41	28140	515	12.8%	17.4%	0.116	0.92	-6508
25 0.048	3 0.034	7.7%	80%	6.3	53.8	46000	9.00	1310	1.2	1297	2697	11.8%	22.5%	5.359	3.34	19350	2970	39.5%	45.1%	0.221	2.24	-16018
26 0.018	0.105	4.9%	65%	6.3	0.0	37000	9.00	910	1.2	2060	1780	12.6%	13.6%	4.242	2.10	18460	504	20.3%	21.0%	0.167	1.01	-4817
27 0.073	3 0.055	4.8%	46%	6.3	35.0	21600	9.04	606	1.2	2164	1358	18.0%	32.8%	2.518	1.84	7359	733	13.6%	25.0%	0.04	0.71	-4286
28 0.017	7 0.008	3.1%	77%	6.3	65.0	56500	9.00	1170	1.2	1858	3271	3.3%	15.8%	6.146	3.93	25039	1053	10.8%	21.0%	0.028	2.24	-8612
29 0.031	0.019	4.6%	56%	6.3	61.3	56500	9.00	975	1.2	1417	2977	5.9%	18.6%	5.978	3.62	23483	792	7.2%	17.7%	0.01	1.61	-7024
30 0.021	0.015	4.1%	70%	6.3	53.8	50000	9.90	1187	0.8	1641	2231	5.1%	16.9%	4.7	2.01	27447	767	11.5%	21.1%	0.039	0.90	-7748
31 0.030	0.012	3.4%	73%	6.3	57.5	59000	9.69	1493	1.2	2474	2949	6.3%	16.0%	6.187	3.54	27027	1167	16.1%	24.0%	0.055	2.54	-10667
32 0.032	2 0.017	4.7%	56%	6.3	50.0	42000	9,31	1515	1.2	1699	2479	8.2%	18.3%	4.98	3.06	19892	721	10.0%	18.8%	0.058	1.68	-6678
33 0.023	3 0.051	4.4%	55%	6.3	7.0	37000	9.00	1145	1.2	2280	1684	9.8%	12.3%	4.424	1.99	19291	294	10.7%	12.8%	0.1	0.57	-3391
34 0.039	0.023	4.4%	70%	6.3	46.3	37000	9.00	1142	1	2176	1563	8.8%	19.3%	4.33	1.85	19665	845	19.3%	27.3%	0.09	1.83	-8871
35 0.003	3 0.049	3.6%	87%	6.3	0.0	40000	8,85	1376	1.2	2158	2157	1.8%	2.3%	4.962	2.39	24246	734	23.6%	23.9%	0.447	1.64	-6635
36 0.054	1 0.040	3.2%	50%	6.3	38.8	28000	8.97	8/6	1	2018	1/50	13.0%	24.4%	3.321	2.17	13/60	032	11.8%	21.0%	0.054	1.21	-5304
3/ 0.008	0.072	3.0%	56%	0.3	20.0	34000	9.09	1004	0.8	2403	2003	3.3%	3.9%	3.754	1.79	19257	652	4.9%	16.0%	0.100	1 21	-1012
30 0.023	0.037	3.3% 2.5%	5/0%	6.3	30.0	40000	0.00	1033	1.2	2450	1884	8.4%	9.3%	4 574	2 20	21021	211	9.2%	10.9%	0.001	0.40	-3007
40 0.032	0.001	2.5%	29%	6.3	42.5	35000	9.00	694	0.8	2819	1975	8.3%	22.5%	3.517	1.81	17408	473	3.3%	15.5%	0.01	0.56	-3981
0.031	0.000	A 4%	63%	6.3	32.0	41278	9 16	1160	1.0	1960	2179	8.2%	16.2%	4 598	2 44	21524	769	14 4%	20.8%	0.084	1 18	-6619
0.031	10.001	7, 7 70	~~~~	0.01	02.0											%change	26.1%	63.6%	56,1%	9,004		00.0

	Retro	fits: D	uct@25	Shade	Rduct		Sizing	dEER	Qahpt	Chg Fi	<	Program Design C											
			Same	No	4		Same	0	400	All		1			U								
				Po	st-Re	etrofit	Site I	Data			است المتعاد بسوي بين		Res	ults - F	Post R	etrofi	t			Sav	ings		
			Du	cts			A	ir Cor	dition	er	Shell		Energ	У	Pea	ak Dei	mand		Energ	IY	Pea	ak Den	nand
	Leakag	e- Oper	Leaka	ge @50	Cond	uction	Rat	ings	AirFlow	Charge	Leakage	Usa	ge & Duc	t Loss	kW @5	PM	3.15	Us	age & Du	ct Loss	kW @:	PM	0.03
Site ID	slf2	rif2	Dikpct2	Dlkred%	UAr2	UAs2	Capr2	EERr2	Qah2	Cha2	Q50S2	Use2	Leaks2	Total2	kW2	DikW2	CapaPk2	kWh	Leaks	Total	kW	DikW	CapaPk
1	0.130	0.076	17.7%	0%	12.5	64.5	46500	9.00	1550	1	2400	2986	29.0%	39.5%	5.671	4.18	17050		9 0.3%	0.2%	0.039	0.03	12
2	0.073	0.106	18.3%	0%	12.5	73.5	46000	9.43	1533	1	1825	2282	22.5%	34.3%	5.419	3.05	19539	61	3 3.1%	5.3%	-0.41	-0.26	190
3	0.059	0.112	11.8%	0%	12.5	15.5	28000	8.97	933	1	1950	1340	20.6%	26.5%	3.477	1.69	14207	4	7 3.1%	2.4%	0.336	0.10	478
4	0.062	0.039	10.9%	0%	12.5	85.0	34000	9.09	1133		1950	1829	14.7%	33.9%	4.051	2.47	13734	48	3 3.3%	5.1%	-0.09	-0.19	783
	0.068	0.036	10.2%	0%	12.5	69.0	46000	8.90	1533		1635	2238	15.5%	27.5%	5.550	2.85	21489		1 0.2%	0.0%	0.05	0.01	146
7	0.002	0.049	1/.270	0%	12.0	40.0	40000	0.90	1000		1440	2349	16 2%	24.270	5.026	2.92	16616	69	6 1 79/	5.0%	0.078	0.01	200
	0.070	0.027	16.5%	0%	12.0	90.0	42500	8.91	1400	<u>-</u>	1700	2782	20.6%	36.5%	5 189	3.83	16372	55	4 0.6%	2.0%	-0.30	-0.29	-3002
9	0.030	0.057	21 4%	0%	12.5	76.3	58500	8.76	1950	1	1950	3432	17.8%	28.0%	7.276	4.38	27549	62	0 0 1%	1.7%	-0.2	1.10	-5955
10	0.137	0.139	7.4%	0%	12.5	77.5	33000	9.00	1100	1	2825	2939	34.7%	50.6%	4.125	4.13	8985	-12	5 -4.7%	-2.0%	-0.38	-0.38	68
11	0.188	0.128	8.9%	0%	12.5	77.5	28200	9.00	940	1	2825	2977	41.4%	59.5%	3.513	3.51	5079	-11	3 -3.5%	-1.6%	-0.22	-0.22	292
12	0.023	0.121	6.4%	0%	12.5	0.0	37000	9.00	1233	1	2400	1956	16.2%	17.7%	4.592	2.35	22150	38	6 1.6%	2.0%	-0.49	-0.23	-152
13	0.150	0.111	16.2%	0%	12.5	70.0	28200	8.92	940	1	2400	2525	34.7%	52.0%	3.521	3.52	7100	-4	8 -2.0%	-0.9%	-0.15	-0.15	50
14	0.070	0.067	16.1%	0%	12.5	77.5	35000	9.36	1167	1	1125	2064	18.5%	35.3%	4.095	2.81	14034	59	9 5.5%	6.3%	0.039	-0.16	978
15	0.043	0.020	10.1%	0%	12.5	63.0	35000	9.36	1167	1	1000	1276	9,6%	24.5%	4.02	1.60	17112	28	7 2.3%	3.5%	-0.04	-0.12	1225
16	0.162	0.173	12.9%	0%	12.5	0.0	35800	9.40	1193	1	2300	2224	40.4%	41.9%	4.336	3.10	13501	14	2 -5.1%	-4.7%	-0.52	0.14	-2121
17	0.098	0.043	6.8%	0%	12.5	85.0	35800	9.40	1193	1	2300	2205	21.1%	39.0%	4.132	3.12	12804	57	1 -1.6%	5.3%	-0.64	-0.31	-782
18	0.051	0.117	8.4%	0%	12.5	0.0	35800	9.40	1193		2350	1682	19.9%	21.5%	4.251	2.05	120058	28	0.8%	1.0%	-0.08	0.44	-3859
- 19	0.000	0.030	0.3%	0%	12.5	65.0	50000	9.40	1067	1	1830	2000	24 0%	33.0%	6 663	5 32	2/088	51	5 -4 2%	0.6%	-0.32	-0.23	40
21	0.100	0.005	12 1%	0%	12.5	107.5	56900	9.09	1897	1	2500	4829	32 3%	45.8%	6 685	6.69	17102	62	8 .4.7%	0.3%	-0.78	-0.71	-3787
22	0.128	0.053	14.9%	0%	12.5	53.8	58500	9.87	1950	1	1900	3317	26.9%	34.3%	6.449	4.41	24049	45	6 -3.1%	-0.6%	-0.59	0.69	-5152
23	0.155	0.052	13.9%	0%	12.5	92.5	42000	9.31	1400	1	1725	3366	31.7%	47.6%	4.907	4.91	11871	52	6 -2.9%	1.4%	-0.37	-0.37	-3212
24	0.058	0.085	14.2%	0%	12.5	57.5	46000	9.43	1533	1	1900	2640	18.3%	28.2%	5.377	3.38	22013	-1	B -1.0%	-0.5%	-0.17	-0.05	-381
25	0.240	0.171	29.6%	0%	12.5	107.5	46000	9.00	1533	1	1700	4908	51.4%	65.5%	5.807	5.81	6129	76	0 -0.1%	2.2%	-0.23	-0.23	-2797
26	0.052	0.302	13.0%	0%	12.5	0.0	37000	9.00	1233	1	2250	2145	38.4%	39.6%	4.871	2.72	17262	13	9 -5.4%	-5.1%	-0.46	0.39	-3619
27	0.135	0.102	8.4%	0%	12.5	70.0	21600	9.04	720	1	2250	1722	31.8%	54.3%	2.658	2.66	4863	3 6	9 -0.1%	3.5%	-0.1	-0.10	-1791
28	0.073	0.035	12.2%	0%	12.5	130.0	56500	9.00	1883	1	2050	3588	16.1%	33.3%	6.777	4.81	23099	73	6 -2.0%	3.5%	-0.6	1.35	-6673
29	0.069	0.042	9.9%	0%	12.5	122.5	56500	9.00	1883		1500	3102	16,2%	32,4%	6.798	4.12	23/30	66	7 -3.1%	3.8%	-0.81	1.11	-7271
30	0.070	0.049	11.5%	0%	12.5	115.0	50000	9.90	1007	1	2700	2309	22 4%	33.1%	0.460 6.508	3.19	20/9/	65	9 -0.5%	4.970	-0.75	-0.28	-1097
32	0.072	0.044	10.0%	0%	12.5	100.0	42000	9.31	1400		1800	2665	16.3%	34.3%	4.88	3.62	16806	53	5 1.8%	2.7%	0.158	1.13	-3592
33	0.051	0.112	9.2%	0%	12.5	14.0	37000	9.00	1233	<u>i</u>	2400	1675	19.4%	23.6%	4.577	2.07	19833	30	3 1.0%	1.6%	-0.05	0.48	-3933
34	0.130	0.076	13.3%	0%	12.5	92.5	37000	9.00	1233	1	2400	2422	29.0%	46.8%	4.515	3.74	10845	-1	4 -0.9%	-0.3%	-0.1	-0.06	-50
35	0.022	0.393	22.9%	0%	12.5	0.0	40000	8.85	1333	1	2700	2385	21.8%	22.4%	5,287	3.04	22806	50	5 3.7%	3.8%	0.122	0.99	-5196
36	0.107	0.079	6.1%	0%	12.5	77.5	28000	8.97	933	1	2700	2390	25.5%	45.5%	3.436	3.44	8526		8 -0.7%	-0.1%	-0.06	-0.06	-69
37	0.021	0.186	7.3%	0%	12.5	0.0	34000	9.09	1133	1	2600	1792	7.4%	8.3%	4.179	2.15	22549	32	5 0.8%	1.0%	-0.32	-0.17	48
38	0.051	0.085	7.1%	0%	12.5	77.5	40000	8.85	1333	1	2600	2904	17.2%	31.8%	4.981	3.85	17626	52	6 -0.8%	2.3%	-0.28	0.85	-4437
39	0.034	0.133	5.3%	0%	12.5	0.0	40000	9.00	1333	1	2850	1832	18.8%	20.2%	4.986	2.23	23108	26	3 -1.2%	-0.9%	-0.33	0.37	-4604
40	0.045	0.053	3.7%	0%	12.5	85.0	35000	9.00	1167	1	2850	1918	13.1%	31.7%	4.235	2.54	15040	53	0 -1.5%	6.3%	-0,71	-0.17	-1613
	0.090	0.093	12.4%	0%	12.5	65.8	41278	9.16	1376	1.0	2132	2584	23.1%	35.3%	4.954	3.44	16986	36	4 -0.5%	1.7%	-0.27	0.19	-2081
																	1%CDODOF	112.39	61 -2.0%	4.6%			
:	Retrofits: D	uct@25	Shade	Rduct		Sizing	dEER	Qahpt	Chg Fi	×		Progra	am De	sign D)								
----------	---------------	---------	---------------	-------	---------	--------	--------	---------	--------	---------	------	----------	----------	--------	---------	---------	-------	---------	--------------	-------	-------	--------	
		75	No	4		Same	0	400	All														
			Po	st-Re	etrofit	Site	Data					Res	ults - I	Post R	etrofit				Sav	ings			
		Duc	cts			Ā	ir Cor	ndition	er	Shell		Energ	У	Pea	ak Der	nand		Energy	/	Pea	k Dem	land	
	Leakage- Oper	Leaka	je @50	Cond	uction	Rat	ings	AirFlow	Charge	Leakage	Usa	ge & Duc	t Loss	kW @5	PM	2.64	Usag	e & Duc	Loss	kW @5	РМ	0.54	
Site ID	sit2 rif2	Dlkpct2	Dlkred%	UAr2	UAs2	Capr2	EERr2	Qah2	Cha2	Q50S2	Use2	Leaks2	Total2	kW2	DikW2	CapaPk2	kWh	Leaks	Fotal	kW	DikW	CapaPl	
1	0.024 0.014	3.8%	81%	12.5	64.5	46500	9.00	1550	1	2055	2133	5.8%	17.5%	5.532	2,50	25762	862	23.5%	22.2%	0.178	1.70	-8700	
2	0.021 0.031	6.2%	71%	12.5	73.5	46000	9.43	1533	1	1589	1851	7.0%	20.1%	5.263	2.22	24614	1045	18.5%	19.5%	-0.25	0.57	-488	
3	0.020 0.037	4.3%	66%	12.5	15.5	28000	8.97	933	1	1797	1124	7.4%	13.7%	3.38	1.30	16901	262	16.4%	15.2%	0.434	0.49	-2210	
4	0.025 0.016	4.7%	60%	12.5	85.0	34000	9.09	1133	1	1823	1604	6.1%	26.0%	4.013	2.02	15978	708	11.9%	13.0%	-0.05	0.27	-146	
5	0.022 0.011	5.8%	68%	12.5	69.0	46000	8.90	1533	1	1454	1929	5.0%	17.6%	5.531	2.29	25353	311	10.7%	9.9%	0.106	0.57	-3719	
6	0.018 0.014	5.7%	/1%	12.5	46.0	46000	8.90	1533	1	1360	2029	4.7%	13.6%	5.537	2.36	27238	325	11.4%	10.7%	0.157	0.58	-377	
<u> </u>	0.025 0.009	5.3%	68%	12.5	100.0	42000	9.00	1400		1290	2324	5.3%	24.3%	4.988	2.90	20333	1067	12.6%	15.1%	-0.33	0,48	-3619	
	0.031 0.018	6.3%	00%	12.5	90.0	42500	8.91	1417		1010	2315	1.3%	24.2%	5.118	2.88	20798	1022	13.9%	15.0%	-0.01	2,11	-8418	
	0.018 0.014	0.4%	75%	12.5	77.5	33000	9.70	1950		2717	2012	4.0%	15.5%	4.017	3.30	12067	500	13.2%	19.2%	-0.07	2.07	-11908	
11	0.083 0.057	4 1%	56%	12.5	77.5	28200	9.00	940	1	2685	2113	19.8%	40.3%	3 42	3.03	9803	751	18.2%	17.7%	-0.13	0.35	-401	
12	0.013 0.065	3.5%	46%	12.5	0.0	37000	9.00	1233	1	2329	1814	9.0%	10.6%	4,496	2.10	23900	528	8.7%	9.1%	-0.39	0.02	-1902	
13	0.034 0.025	4.2%	77%	12.5	70.0	28200	8.92	940	1	2100	1675	8.6%	28.5%	3.406	2.10	12697	801	24.0%	22.6%	-0.03	1.27	-554	
14	0.028 0.027	7.2%	60%	12.5	77.5	35000	9.36	1167	1	1016	1790	7.7%	25.5%	4.03	2.25	16816	873	16.3%	16.1%	0.103	0.40	-1804	
15	0.033 0.016	8.0%	22%	12.5	63.0	35000	9.36	1167	1	977	1239	7.5%	22.5%	4.012	1.54	17710	324	4.5%	5.5%	-0.03	-0.05	627	
16	0.038 0.041	3.3%	77%	12.5	0.0	35800	9.40	1193	1	2074	1480	10.7%	12.5%	4.128	1.69	22154	887	24.6%	24.8%	-0.31	1.55	-10774	
17	0.049 0.022	3.5%	50%	12.5	85.0	35800	9.40	1193	1	2223	1900	10.9%	29.6%	4.097	2.46	15739	875	8.7%	14.8%	-0.61	0.34	-3718	
18	0.016 0.038	2.9%	67%	12.5	0.0	35800	9.40	1193	1	2216	1447	6.9%	8.6%	4.124	1.64	23429	524	13.8%	13.9%	0.049	0.85	-7229	
19	0.039 0.017	3.2%	52%	12.5	85.0	35800	9.40	1193	1	2274	1853	8.6%	27.5%	4.09	2.37	16388	797	10.6%	13.3%	-0.29	0.28	-2469	
20	0.025 0.016	4.0%	77%	12.5	65.0	59000	9.69	1967	1	1619	3165	6.2%	15.5%	6.523	3.73	33894	1348	14.5%	17.3%	-0.64	2.15	-14694	
21	0.039 0.014	3.3%	75%	12.5	107.5	56900	9.27	1897	1	2272	3465	8.4%	23.3%	6.572	4.29	28267	_1991	19.2%	22.8%	-0.6	1.69	-15364	
22	0.032 0.013	4.2%	75%	12.5	53.8	58500	9.87	1950	1	1688	2542	7.0%	15.0%	6.344	2.98	33861	1231	16.9%	18.7%	-0.49	2.12	-14963	
23	0.053 0.018	5.3%	65%	12.5	92.5	42000	9.31	1400	1	1568	2489	11.2%	28.6%	4.84	3.19	18829	1404	17.6%	20.4%	-0.31	1.34	-1017	
24	0.015 0.021	3.9%	75%	12.5	57.5	46000	9.43	1533		1698	2236	4.8%	15.5%	5.242	2.63	26482	387	12.5%	12.2%	-0.03	0.70	-4850	
25	0.048 0.034	1.1%	80%	12.5	107.5	46000	9.00	1533	1	1297	2566	11.8%	29.7%	5.519	3.27	20343	3102	39.5%	38.0%	0.061	2.31	-17011	
20	0.018 0.105	4.9%	46%	12.5	70.0	21600	9.00	720	1	2000	1365	10 10/	10.4%	4.000	1.03	22/03	714	19.17	15.4%	-0.16	1.28	-9120	
28	0.017 0.003	3.1%	77%	12.5	130.0	56500	9.00	1883		1858	3050	3.8%	22.0%	6 702	3.75	28570	1273	10.3%	14.8%	-0.53	2 41	-1214	
29	0.031 0.019	4.6%	56%	12.5	122.5	56500	9.00	1883	1	1417	2768	7.4%	24.3%	6.733	3.46	27604	1001	5.7%	12.0%	-0.74	1.77	-11144	
30	0.021 0.015	4.1%	70%	12.5	107.5	50000	9.90	1667	1	1641	2041	5.2%	22.3%	5,408	2.51	25288	957	11.3%	15.7%	-0.67	0.39	-5588	
31	0.030 0.012	3.4%	73%	12.5	115.0	59000	9.69	1967	1	2474	2745	6.6%	22.0%	6.512	3.36	29965	1371	15.8%	17.9%	-0.27	2.72	-13605	
32	0.032 0.017	4.7%	56%	12.5	100.0	42000	9.31	1400	1	1699	2365	7.3%	26.1%	4.837	3.00	19749	835	10.8%	11.0%	0.201	1.75	-6536	
33	0.023 0.051	4.4%	55%	12.5	14.0	37000	9.00	1233	1	2280	1478	9.3%	13.7%	4.471	1.72	22526	500	11.2%	11.4%	0.053	0.84	-6626	
34	0.039 0.023	4.4%	70%	12.5	92.5	37000	9.00	1233	1	2176	1767	9.1%	28.7%	4.421	2.24	16551	641	19.0%	17.9%	-0	1.44	-5756	
35	0.003 0.049	3.6%	87%	12.5	0.0	40000	8.85	1333	1	2158	1865	1.6%	2.4%	4.875	2.03	28022	1026	23.8%	23.7%	0.535	2.00	-10412	
36	0.054 0.040	3.2%	50%	12,5	77.5	28000	8.97	933	1	2618	2012	13.4%	34.7%	3.384	2.74	11075	370	11.4%	10.7%	-0.01	0.63	-2618	
37	0.008 0.072	3.0%	61%	12.5	0.0	34000	9.09	1133	1	2483	1714	3.0%	4.0%	4.06	1.95	23433	403	5.2%	5.3%	-0.2	0.03	-836	
38	0.023 0.037	3.3%	56%	12.5	77.5	40000	8.85	1333	1	2496	2602	7.9%	23.4%	4.89	3.23	20187	829	8.4%	10.6%	-0.18	1.47	-6997	
39	0.016 0.061	2.5%	54%	12.5	0.0	40000	9.00	1333	1	2768	1649	9.0%	10.6%	4.852	1.90	25798	447	8.6%	8.8%	-0.2	0.70	-7293	
40	0.032 0.038	2.7%	29%	12.5	85.0	35000	9.00	1167		2819	1828	9.4%	28.4%	4.209	2.36	15952	620	2.2%	9.6%	-0.68		-2525	
	0.031 0.031	4.4%	63%	12,5	65.8	41278	9.16	1376	1.0	1960	2077	8.4%	21.5%	4.848	2.56	21709	870	14.2%	15.5%	-0.17	1.07	-6804	
																%change	29.5%	62.9%	41.8%				

E-7

94.114

	Retrof	its: Di	uct@25	Shade	Rduct		Sizing	dEER	Qahpt	Chg Fi	<		Progra	ım De	sign E								
			75	No	8		Same	0	400	Ali													
				Pos	st-Re	etrofit	Site D	ata					Res	ults - F	Post R	letrofi	t			Sav	ings		
			Duc	ts			Ai	r Cor	dition	er	Shell		Energ	y	Pea	ak Der	nand		Energ	IY	Pea	<u>ak Dem</u>	nand
	Leakage	- Oper	Leakag	e @50	Cond	uction	Ratir	igs	AirFlow	Charge	Leakage	Usa	ge & Duc	t Loss	kW @5	5PM	2.47	U	sage & Du	ct Loss	kW @5	PM	0.71
Site ID	slf2	rlf2	Dlkpct2	Dikred%	UAr2	UAs2	Capr2 E	ERr2	Qah2	Cha2	Q50S2	Use2	Leaks2	Total2	kW2	DikW2	CapaPk2	kWł	Leaks	Total	kW	DikW	CapaPk
1	0.024	0.014	3.8%	81%	6.3	32.3	46500	9.00	1550	1	2055	1996	5.8%	11.7%	5.523	2.27	28397	9	9 23.5%	28.0%	0.187	1.94	-11335
2	0.021	0.031	6.2%	71%	6.3	36.8	46000	9.43	1533	1	1589	1716	7.0%	13.7%	5.255	1.98	27534		79 18.5%	25.9%	-0.24	0.81	-7804
	0.020	0.037	4.3%	00%	6.3	1.8	28000	8.97	933		1/9/	1087	7.4%	10.6%	3.372	1.23	1//41	-2	39 16.4%	18.3%	0,442	0.56	-3056
5	0.020	0.011	5.8%	68%	6.3	34.5	46000	8 90	1533	1	1454	1796	5.0%	11 5%	5 522	2.06	28140		12 10 7%	16 1%	-0.04	0.01	-4702
6	0.018	0.014	5.7%	71%	6.3	23.0	46000	8.90	1533	1	1360	1933	4.7%	9.2%	5.528	2.19	29225		11.4%	15.1%	0.166	0.74	-5759
7	0.025	0.009	5.3%	68%	6.3	50.0	42000	9.00	1400	1	1296	2076	5.3%	15.1%	4.979	2.44	24135	13	15 12.6%	24.3%	-0.32	0.94	-7421
8	0.031	0.018	6.3%	66%	6.3	45.0	42500	8.91	1417	1	1516	2091	7.3%	16.0%	5.109	2.46	24254	12	15 13.9%	23.2%	0.003	2.53	-11875
9	0.018	0.014	6.4%	75%	6.3	38.1	58500	8.76	1950	1	1637	2704	4.6%	10.2%	7.141	3.07	36590	13	48 13.2%	19.5%	-0.06	2.36	-14997
10	0.067	0.068	3.8%	51%	6.3	38.8	33000	9.00	1100	1	2717	2054	18.0%	27.2%	4.009	2.59	15922	7	59 12.0%	21.4%	-0,26	1.16	-6868
11	0.083	0.057	4.1%	56%	6.3	38.8	28200	9.00	940	1	2685	1827	19.8%	30.4%	3.412	2.35	12606	10	37 18.2%	27.6%	-0.12	0.94	-7234
12	0.013	0.065	3.5%	45%	6.3	0.0	37000	9.00	1233	1	2329	1801	9.0%	9.9%	4,488	2.07	24155	5	8.7%	9.9%	-0.38	0.04	-2157
14	0.034	0.025	4.270	60%	63	39.8	35000	0.92	1167		1016	1401	7 7%	16.9%	3.380	1.73	10804	10	56 16 2%	24 7%	-0.02	0.74	-0234
15	0.020	0.016	8.0%	22%	63	31.5	35000	9.36	1167	1	977	1134	7.5%	15.2%	4.022	1.34	20234		0 4.5%	12.8%	-0.03	0.74	-1897
16	0.038	0.041	3.3%	77%	6.3	0.0	35800	9.40	1193	1	2074	1468	10.7%	11.6%	4.121	1.67	22414	8	9 24.6%	25.6%	-0.3	1.58	-11035
17	0.049	0.022	3.5%	50%	6.3	42.5	35800	9.40	1193	1	2223	1687	10.8%	20.5%	4.089	2.04	18948	10	8.7%	23.9%	-0.6	0.76	-6927
18	0.016	0.038	2.9%	67%	6.3	0.0	35800	9.40	1193	1	2216	1435	6.9%	7.8%	4.117	1.62	23687	5	35 13.7%	14.7%	0.057	0.87	-7488
19	0.039	0.017	3.2%	52%	6.3	42.5	35800	9.40	1193	1	2274	1648	8.6%	18.3%	4.081	1.97	19620	10	10.6%	22.5%	-0.28	0.67	-5702
20	0.025	0.016	4.0%	77%	6.3	32.5	59000	9.69	1967	1	1619	3005	6.2%	10.9%	6.515	3.45	36575	15	08 14.5%	21.9%	-0.64	2.43	-17375
21	0,039	0.014	3.3%	75%	6.3	53.8	56900	9.27	1897	1	2272	3170	8.4%	16.0%	6.563	3.74	32378	22	37 19.3%	30.1%	-0.59	2.24	-19475
22	0.032	0.013	4.2%	/5%	6.3	26.9	58500	9.87	1950	1	1688	2431	7.0%	11.1%	6.337	2.79	36135	13	12 16.9%	22.7%	-0.48	2.31	-1/238
23	0.055	0.018	3.3%	75%	63	28.8	46000	9.51	1533		1000	2232	A 8%	10 3%	5 234	2.09	22324	10	5 12 5%	17 4%	-0.3	1.85	-13000
25	0.013	0.021	7.7%	80%	6.3	53.8	46000	9.00	1533	1	1297	2288	11.8%	21.0%	5.234	273	24320	33	10 12.5%	46 7%	-0.02	2.85	-7240
26	0.018	0.105	4.9%	65%	6.3	0.0	37000	9.00	1233	1	2060	1558	13.9%	14.6%	4.558	1.81	23013	7	26 19.1%	19.9%	-0.15	1.30	-9370
27	0.073	0.055	4.8%	46%	6.3	35.0	21600	9.04	720	1	2164	1142	18.1%	30.8%	2.603	1.47	9558	9	19 13.5%	27.1%	-0.05	1.09	-6486
28	0.017	0.008	3.1%	77%	6.3	65.0	56500	9.00	1883	1	1858	2744	3.8%	13.2%	6.694	3.20	33479	15	79 10.3%	23.6%	-0.52	2.97	-17053
29	0.031	0.019	4.6%	56%	6.3	61.3	56500	9.00	1883	1	1417	2499	7.4%	16.1%	6.724	2.96	32210	12	70 5.7%	20.2%	-0.74	2.27	-15750
30	0.021	0.015	4.1%	70%	6.3	53.8	50000	9.90	1667	1	1641	1847	5.2%	14.0%	5.4	2.16	29391	11	51 11.3%	24.0%	-0.66	0.75	-9692
31	0.030	0.012	3.4%	73%	6.3	57.5	59000	9.69	1967	1	2474	2505	6.6%	14.5%	6.504	2.93	34359	16	11 15.8%	25.4%	-0.26	3.16	-17999
32	0.032	0.017	4.7%	56%	6.3	50.0	42000	9.31	1400	1	1699	2110	7.3%	17.0%	4.829	2.51	23523	10	0 10.8%	20.1%	0.209	2.24	-10309
33	0.023	0.051	4.4%	55%	6.3	16.2	37000	9.00	1233		2280	1443	9.3%	11.5%	4,463	1.00	23310		11.1%	13.6%	0.061	0.90	-7409
- 34	0.039	0.023	4.4%	07%	6.3	40.3	40000	9.00	1233	1	21/0	1950	9.1%	19.2%	4.412	1.65	20020	10	19.0%	21.3%	0.008	1.83	-9223
36	0.003	0.049	3.0%	50%	6.3	38.8	28000	8.97	933		2618	1751	13.4%	24.4%	3 375	2.02	13940	-10	21 11 49	24.17	1E-04	1 20	-10002
37	0.008	0.072	3.0%	61%	6,3	0.0	34000	9.09	1133	1	2483	1707	3.0%	3.5%	4.055	1.94	23602	Ā	0 5.2%	5.8%	-0.19	0.04	-1005
38	0.023	0.037	3.3%	56%	6.3	38.8	40000	8,85	1333	1	2496	2375	7.9%	15.8%	4.881	2.81	23198	10	56 8.4%	18.2%	-0.18	1.90	-10009
39	0.016	0.061	2.5%	54%	6.3	0.0	40000	9.00	1333	1	2768	1637	9.1%	9.8%	4.844	1.88	26053	4	8 8.6%	9.5%	-0.19	0.72	-7549
40	0.032	0.038	2.7%	29%	6.3	42.5	35000	9.00	1167	1	2819	1623	9.4%	19.2%	4.201	1.96	19154	8	25 2.2%	18.8%	-0.67	0.41	-5727
	0.031	0.031	4.4%	63%	6,3	32.9	41278	9.16	1376	1.0	1960	1914	8.4%	15.1%	4.84	2.25	24291	10	14.3%	21.9%	-0.16	1.38	-9386
																	%change	25.1	0/ 62 00/	50 1%			

	Retrof	its: D	uct@25	Shade	Rduct		Sizing	dEER	Qahpt	Chg Fi	ĸ		Progra	ım De	sign F								
		_	Same	No	4		Same	2	400	All													
				Po	st-Re	etrofit	Site	Data					Res	ults - F	Post R	etrofi	t			Sav	ings		
			Du	cts			A	ir Cor	ndition	er	Shell		Energ	γ	Pea	ak Dei	mand		Energ	У	Pea	ik Dem	and
	Leakage	- Oper	Leaka	ge @50	Cond	uction	Rat	ings	AirFlow	Charge	Leakage	Usa	ge & Duc	t Loss	kW @5	PM	2.59	Usa	ge & Duc	t Loss	kW @5	PM	0.60
Site ID	sif2	rlf2	Dlkpct2	Dikred%	UAr2	UAs2	Capr2	EERr2	Qah2	Cha2	Q50S2	Use2	Leaks2	Total2	kW2	DikW2	CapaPk2	kWh	Leaks	Total	kW	DikW	CapaPk
1	0.130	0.076	17.7%	0%	12.5	64.5	46500	11.00	1550	1	2400	2443	29.0%	39.5%	4.64	3.42	17050	552	0.3%	0.2%	1.07	0.79	12
2	0.073	0.106	18.3%	0%	12.5	73.5	46000	11.43	1533	11	1825	1883	22.5%	34.3%	4.471	2.52	19539	1012	3.1%	5.3%	0.54	0.28	190
3	0.059	0.112	11.8%	0%	12.5	15.5	28000	10.97	933	1	1950	1096	20.6%	26.5%	2.844	1.38	14207	291	3.1%	2.4%	0.97	0.41	478
4	0.062	0.039	10.9%	0%	12.5	85.0	34000	11.09	1133	1	1950	1499	14.7%	33.9%	3.32	2.02	13734	813	3.3%	5.1%	0.639	0.26	783
<u> </u>	0.068	0.036	15.2%	0%	12.5	69.0	46000	10.90	1533		1635	1828	15.5%	27.5%	4.561	2.33	21489	412	0.2%	0.0%	1.076	0.53	140
	0.062	0.049	11.2%	0%	12.5	46.0	46000	10.90	1533		1550	1918	15.7%	24.2%	4.586	2.39	23260	430	0.4%	0.2%	1.109	0.00	200
	0.078	0.027	14.8%	0%	12.5	100.0	42000	10.01	1400		1440	2213	10.3%	34.4%	4.112	3.01	10010	11/8	1./%	5.0%	0.549	0.38	9000
	0.090	0.052	10.076	0%	12.5	76.2	42500	10.91	1417	<u> </u> ;	1050	22/2	17 00/	30.5%	4.230	3.13	27540	1004	0.0%	2.170	1 152	1.00	-3992
10	0.070	0.037	7 10/	0%	12.0	77.5	33000	11.00	1100		2825	2/04	34 7%	50.6%	3 375	3.00	27545	400	4 7%	.2 0%	0.260	1.07	83
11	0.137	0.100	8.9%	0%	12.5	77.5	28200	11.00	940	<u> i</u>	2825	2436	A1 4%	59.5%	2 874	2.87	5079	403	-4.7 /0	-1.6%	0.305	0.37	202
12	0.023	0.121	6.4%	0%	12.5	0.0	37000	11.00	1233	1	2400	1601	16.2%	17.7%	3.757	1.92	22150	742	1.6%	2.0%	0.348	0.19	-152
13	0.150	0.111	16.2%	0%	12.5	70.0	28200	10.92	940	1	2400	2063	34.7%	52.0%	2.876	2.88	7100	414	-2.0%	-0.9%	0.498	0.50	50
14	0.070	0.067	16.1%	0%	12.5	77.5	35000	11.36	1167	1	1125	1701	18.5%	35.3%	3.374	2.31	14034	962	5.5%	6.3%	0.76	0.34	978
15	0.043	0.020	10.1%	0%	12.5	63.0	35000	11.36	1167	1	1000	1051	9.6%	24.5%	3.312	1.32	17112	511	2.3%	3.5%	0.665	0,16	1225
16	0.162	0.173	12.9%	0%	12.5	0.0	35800	11.40	1193	1	2300	1834	40.4%	41.9%	3.575	2.56	13501	533	-5.1%	-4.7%	0.243	0.68	-2121
17	0.098	0.043	6.8%	0%	12.5	85.0	35800	11.40	1193	1	2300	1818	21.1%	39.0%	3.407	2.57	12804	958	-1.6%	5.3%	0.082	0.23	-782
18	0.051	0.117	8.4%	0%	12.5	0.0	35800	11.40	1193	1	2350	1387	19.9%	21.5%	3.505	1.69	20058	584	0.8%	1.0%	0.668	0.80	-3859
19	0.080	0.036	6.3%	0%	12.5	85.0	35800	<u>11.40</u>	1193	1	2350	1732	17.4%	35.6%	3.398	2.37	13879	919	1.7%	5.2%	0.406	0.28	40
20	0.108	0.069	15.1%	0%	12.5	65.0	59000	11.69	1967	1	1830	3315	24.9%	33.4%	5.523	4.41	24988	1199	-4.2%	-0.6%	0.357	1.47	-5787
21	0.158	0.056	12.1%	0%	12.5	107.5	56900	11.27	1897	1	2500	3972	32.3%	45.8%	5.499	5.50	17102	1485	-4.7%	0.3%	0.475	0.47	4198
22	0.128	0.053	14.9%	0%	12.5	53.8	58500	11.87	1950	1	1900	2758	26.9%	34.3%	5.362	3.67	24049	1015	-3.1%	-0.6%	0.497	1.43	-5152
23	0.155	0.052	13.9%	0%	12.5	92.5	42000	11.31	1400	1	1725	2771	31.7%	47.6%	4.04	4.04	11871	1122	-2.9%	1.4%	0.494	0.49	-3212
24	0.058	0.085	14.2%	0%	12.5	57.5	46000	11.43	1533	1	1900	21/8	18.3%	28.2%	4.436	2.78	22013	444	-1.0%	-0.5%	0.775	0.54	-381
25	0.240	0.1/1	29.6%	0%	12.5	107.5	46000	11.00	1533		1/00	4015	51.4%	05.5%	4.752	4.75	6129	1652	-0.1%	2.2%	0.829	0.83	-2/9/
20	0.032	0.302	13.0%	0%	12.5	70.0	21600	11.00	720		2250	1/55	30.4%	54 294	3.900	2.22	1/202	529	-5.4%	-5.1%	0.423	0.89	-3019
28	0.073	0.035	12.2%	0%	12.5	130.0	56500	11.00	1883	1	2050	2936	16 1%	33 3%	5 545	3.94	23099	1389	-2.0%	3.5%	0.502	2 23	-6673
20	0.069	0.042	9.9%	0%	12.5	122.5	56500	11.00	1883	1	1500	2538	16.2%	32 4%	5 562	3 37	23730	1231	-3 1%	3.8%	0 427	1.86	-7271
30	0.070	0.049	12.6%	0%	12.5	107.5	50000	11.90	1667	1	1800	1987	17.0%	33.1%	4.563	2.65	20797	1011	-0.5%	4.9%	0.176	0.26	-1097
31	0.111	0.044	11.5%	0%	12.5	115.0	59000	11.69	1967	1	2700	2873	23.4%	37.8%	5,469	3.99	21874	1243	-1.1%	2.1%	0.773	2.10	-5514
32	0.072	0.038	10.0%	0%	12.5	100.0	42000	11.31	1400	1	1800	2194	16.3%	34.3%	4.017	2.98	16806	1006	1.8%	2.7%	1.021	1.77	-3592
33	0.051	0.112	9.2%	0%	12.5	14.0	37000	11.00	1233	1	2400	1370	19.4%	23.6%	3.745	1.70	19833	608	1.0%	1.6%	0.78	0.86	-3933
34	0.130	0.076	13.3%	0%	12.5	92.5	37000	11.00	1233	1	2400	1982	29.0%	46.8%	3.695	3.06	10845	426	-0.9%	-0.3%	0.725	0.62	-50
35	0.022	0.393	22.9%	0%	12.5	0.0	40000	10.85	1333	1	2700	1946	21.8%	22.4%	4.312	2.48	22806	945	3.7%	3.8%	1.097	1.55	-5196
36	0.107	0.079	6.1%	0%	12.5	77.5	28000	10.97	933	1	2700	1955	25.5%	45.5%	2.81	2.81	8526	427	-0.7%	-0.1%	0.566	0.57	-69
37	0.021	0.186	7.3%	0%	12.5	0.0	34000	11.09	1133	1	2600	1469	7.4%	8.3%	3.426	1.76	22549	648	0.8%	1.0%	0.436	0.22	48
38	0.051	0.085	7.1%	0%	12.5	77.5	40000	10,85	1333	1	2600	2369	17.2%	31.8%	4.063	3.14	17626	1062	-0.8%	2.3%	0.642	1.56	-4437
39	0.034	0.133	5.3%	0%	12.5	0.0	40000	11,00	1333	1	2850	1499	18.8%	20.2%	4.079	1.82	23108	596	-1.2%	-0.9%	0.577	0.77	-4604
40	0.045	0.053	3.7%	0%	12.5	85.0	35000	11.00	1167	1	2850	1569	13.1%	31.7%	3,465	2.08	15040	879	-1.5%	6.3%	0.062	0.29	-1613
	0.090	0.093	12.4%	0%	12.5	65.8	41278	11.16	1376	1.0	2132	2121	23.1%	35.3%	4.067	2.82	16986	827	-0.5%	1.7%	0.614	0.80	-2081
																	%change	28.0%	-2.0%	4.6%			

and the server

	Retrof	lts: Di	uct@25	Shade	Rduct		Sizing	dEER	Qahpt	Chg Fi	x		Progra	am De	sign G	;							
			75	No	8		Same	2	400	All			-		0								
				Po	st-Re	etrofit	Site	Data					Res	ults - F	Post R	etrofi	t		88°	Sav	lings		
			Duc	cts			A	ir Cor	dition	er	Shell		Energ	y	Pea	ak Dei	mand		Ene	rgy	Pe	ak Den	and
	Leakage	- Oper	Leakag	je @50	Cond	luction	Ra	tings	AirFlow	Charge	Leakage	Usa	ge & Duc	t Loss	kW @5	PM	2,03	U	sage & [uct Loss	kW @	5PM	1,16
Site ID	slf2	rlf2	Dlkpct2	Dikred%	UAr2	UAs2	Capr2	EERr2	Qah2	Cha2	Q50S2	Use2	Leaks2	Total2	kW2	DikW2	CapaPk2	kWł	Loaks	Total	kW	DikW	CapaPk
1	0.024	0.014	3.8%	81%	6.3	32.3	46500	11.00	1550	1	2055	1634	5.8%	11.7%	4.519	1.85	28397	_13	1 23.5	% 28.0%	1.191	2.35	-11335
2	0.021	0.031	6.2%	71%	6.3	36.8	46000	11.43	1533	1	1589	1415	7.0%	13.7%	4.335	1.63	27534	14	0 18.5	% 25.9%	0.675	1.16	-7804
3	0.020	0.037	4.3%	66%	6.3	7.8	28000	10.97	933	1	1797	889	7.4%	10.6%	2.757	1.01	17741	4	8 16.4	% 18.3%	1.056	0.78	-3056
4	0.025	0.016	4.7%	60%	6.3	42.5	34000	11.09	1133		1823	1165	6.1%	16.4%	3.282	1.3/	19218	<u> </u>	8 12.0	% 22.6%	0.678	0.91	-4/02
	0.022	0.011	5.8%	08%	6.3	34.5	46000	10.90	1533	1	1454	140/	5.0%	11.5%	4.508	1.08	28149	<u> </u>	3 10.7	% 15.1%	1.128	1.18	-0010
	0.018	0.014	5.7%	600/	0.3	23.0	40000	11.00	1000		1300	1070	4.7%	9.2%	4.014	1.79	29220	16	0 11.4	24 24 24	0.597	1.13	-0/09
8	0.023	0.009	6.3%	66%	63	45.0	42500	10.01	1400		1290	1709	7 3%	16.0%	4.074	2.00	24150	16	0 120	24.37	0.00/	2 98	-11875
	0.0018	0.014	6.4%	75%	6.3	38 1	58500	10.76	1950	1	1637	2201	4.6%	10.0%	5814	2.50	36590	18	1 13.2	% 19.5%	1 263	2.93	-14997
10	0.067	0.068	3.8%	51%	6.3	38.8	33000	11.00	1100	1	2717	1681	18.0%	27.2%	3.28	2.12	15922	11	3 12.0	% 21.4%	0.464	1.63	-6868
11	0.083	0.057	4.1%	56%	6.3	38.8	28200	11.00	940	i	2685	1495	19.8%	30.4%	2.792	1.92	12606	13	9 18.2	% 27.6%	0.498	1.37	-7234
12	0.013	0.065	3.5%	46%	6.3	0.0	37000	11.00	1233	1	2329	1474	9.0%	9.9%	3.673	1.69	24155	8	9 8.7	% 9.9%	0.433	0.42	-2157
13	0.034	0.025	4.2%	77%	6.3	35.0	28200	10.92	940	1	2100	1210	8.6%	18.9%	2.776	1.42	15383	12	7 24.0	% 32.2%	0.598	1.96	-8234
14	0.028	0.027	7.2%	60%	6.3	38.8	35000	11.36	1167	1	1016	1324	7.7%	16.8%	3.314	1.57	19804	13	9 16.3	% 24.7%	0.819	1.08	-4792
15	0.033	0.016	8.0%	22%	6.3	31.5	35000	11.36	1167	1	977	934	7.5%	15.2%	3.299	1.10	20234	6	28 4.5	% 12.8%	0.678	0.38	-1897
16	0.038	0.041	3.3%	77%	6.3	0.0	35800	11.40	1193	1	2074	1210	10.7%	11.6%	3.397	1.37	22414	11	6 24.6	% 25.6%	0.421	1.87	-11035
17	0.049	0.022	3.5%	50%	6.3	42.5	35800	11.40	1193	1	2223	1391	10.8%	20.5%	3.371	1.68	18948	13	5 8.7	<u>% 23.9%</u>	0.118	1.12	-6927
18	0.016	0.038	2.9%	67%	6.3	0.0	35800	11.40	1193	1	2216	1183	6.9%	7.8%	3,394	1.34	23687	7	7 13.7	% 14.7%	0.779	1.16	-7488
19	0.039	0.017	3.2%	52%	6.3	42.5	35800	11.40	1193	1	2274	1359	8.6%	18.3%	3.365	1.63	19620	12	1 10.6	% 22.5%	0.438	1.02	-5702
20	0.025	0.016	4.0%	7/%	6.3	32.5	59000	11.69	1967	1	1619	2491	0.2%	10.9%	5.4	2.80	36575	20	3 14.5	% 21.9%	0.4/9	3.02	-1/3/5
21	0.039	0.014	3.3%	75%	0.3	00.8	50500	11.2/	1897		22/2	2007	8.4%	11 10/	5.398	3.07	32378	28	9 19.3	% 30.1%	0.575	2.90	-194/5
22	0.032	0.013	4.270	65%	63	46.3	42000	11.07	1400		1568	1837	11 2%	20.1%	3.209	2.32	22224	20	6 176	70 22.17	0.59	2.70	-17230
24	0.005	0.010	3.9%	75%	6.3	28.8	46000	11.43	1533	1	1698	1738	4.8%	10.3%	4318	1 99	28872		4 12 5	× 17.4%	0.893	1 34	-7240
25	0.048	0.034	7.7%	80%	6.3	53.8	46000	11.00	1533	1	1297	1872	11.8%	21.0%	4.509	2.23	24320	37	6 39.5	% 46.7%	1.072	3.35	-20988
26	0.018	0,105	4.9%	65%	6.3	0.0	37000	11.00	1233	1	2060	1275	13.9%	14.6%	3.73	1.48	23013	10	9 19.1	% 19.9%	0.679	1.63	-9370
27	0.073	0.055	4.8%	46%	6.3	35.0	21600	11.04	720	1	2164	935	18.1%	30.8%	2.132	1.20	9558	11	6 13.5	% 27.1%	0.426	1.36	-6486
28	0.017	0.008	3.1%	77%	6.3	65.0	56500	11.00	1883	1	1858	2245	3.8%	13.2%	5.477	2.62	33479	20	8 10.3	% 23.6%	0.697	3.55	-17053
29	0.031	0.019	4.6%	56%	6.3	61.3	56500	11.00	1883	1	1417	2045	7.4%	16.1%	5.502	2.43	32210	17	24 5.7	% 20.2%	0.487	2.80	-15750
30	0.021	0.015	4.1%	70%	6.3	53.8	50000	11.90	1667	1	1641	1536	5.2%	14.0%	4.493	1.80	29391	14	2 11.3	% 24.0%	0.246	1.11	- 9 692
31	0.030	0.012	3.4%	73%	6.3	57.5	59000	11.69	1967	1	2474	2077	6.6%	14.5%	5.391	2.43	34359	20	9 15.8	% 25.4%	0.851	3.66	-17999
32	0.032	0.017	4.7%	56%	6.3	50.0	42000	11.31	1400	1	1699	1737	7.3%	17.0%	3.975	2.07	23523	14	<u>3 10.8</u>	% 20.1%	1.063	2.68	-10309
33	0.023	0.051	4.4%	55%	6.3	7.0	37000	11.00	1233	1	2280	1181	9.3%	11.5%	3.652	1.36	23310	7	07 11.1	% 13.6%	0.873	1.20	-7409
34	0.039	0.023	4.4%	70%	6.3	46.3	37000	11.00	1233	1	2176	1278	9.1%	19.2%	3.61	1.51	20020	11	0 19.0	% 27.3%	0.81	2.16	-9225
35	0.003	0.049	3.6%	87%	6.3	0.0	40000	10.85	1333	1	2158	1516	1.6%	2.0%	3.971	1.65	28193	13	5 23.8	% 24.1%	1.438	2.38	-10582
36	0.054	0.040	3.2%	50%	6.3	38.8	28000	10.97	933	1	2618	1432	13.4%	24.4%	2.76	1.78	13940		0 11.4	% 20.9%	0.615	1.60	-5484
37	0.008	0.072	3.0%	61%	6.3	0.0	34000	11.09	1133	1	2483	1399	3.0%	3.5%	3.323	1.59	23602		8 5.2	% 5.8%	0.538	0.39	-1005
38	0.023	0.037	3.3%	56%	6.3	38.8	40000	10.85	1333	1	2496	193/	1.9%	10.8%	3.981	2.29	23198	14	8.4	70 18.2%	0.723	2.41	-10009
	0.016	0.061	2.5%	20%	0.3	125	25000	11.00	1333	·	2/08	1340	9.1%	9.8%	3.904	1.04	1015/		0.0	70 9.5% V 10.00	0.093	0.77	-/048
40	0.032	0.038	C.170	63%	0.3	220	41070	11.00	1976	+	1060	1520	9.44/0	15.6/0	2072	1.01	24204		7 14 0	/0 10.0%	0.09	1 70	-0766
	0.031	0.031	4.4%	03%	0.3	32.9	412/8	11.10	1376	1.0	1900	13/1	0.4%	15.1%	3.873	1.04	2429	13	1 14.3	21.97	0.708	1.78	-9300
																	NCHUILE	· · · · · · · · · · · · · · · · · · ·	/01 03.0	10 00.17	4		

	Retrof	its: Du	uct@25	Shade	Rduct		Sizing	deer	Qahpt	Chg Fi	<		Progro	am De	sign H								
			Same	Yes	4		Same	0	Same	None													
				Po	st-Re	trofit	Site I	Data					Res	ults - I	Post R	etrofi	t			Sav	ings		
			Duc	cts			A	ir Cor	ndition	er	Shell		Energ	У	Pea	ak Dei	nand		Energ	y	Pea	k Den	and
	Leakage	- Oper	Leakag	je @50	Cond	uction	Rat	ings	AirFlow	Charge	Leakage	Usa	ge & Duc	t Loss	kW @5	РМ	2.99	Usa	ge & Du	t Loss	kW @5	PM	0.19
Site ID	sif2	rif2	Dlkpct2	Dlkred%	UAr2	UAs2	Capr2	EERr2	Qah2	Cha2	Q50S2	Use2	Leaks2	Total2	kW2	DikW2	CapaPk2	kWh	Leaks	Total	kW	DikW	CapaPk
	0.130	0.076	17.7%	0%	12.5	64.5	46500	9.00	1588	1	2400	2627	29.3%	39.7%	5.71	3.68	17062	368	0.0%	0.0%	0	0.53	0
2	0.073	0.106	18.3%	0%	12.5	73.5	46000	9.43	1468	0.8	1825	2537	25.6%	39.6%	5.011	2.44	19729	359	0.0%	0.0%	0	0.35	0
	0.059	0.112	11.8%	0%	12.5	15.5	28000	8.97	1229		1950	1213	23.7%	28.9%	3.814	1.57	14685	173	0.0%	0.0%	0	0.22	0
4	0.062	0.039	16.9%	0%	12.5	60.0	46000	9.09	1521	0.8	1950	1060	15.0%	39.0%	5.90	2.00	14510	200	0.0%	0.0%		0.29	
	0.000	0.030	17.2%	0%	12.5	46.0	46000	8.90	1612	1	1650	2060	16.0%	21.0%	5.604	2.50	21035	200	0.0%	0.0%	0	0.30	
	0.002	0.043	14.8%	0%	12.5	100.0	42000	9.00	1345	08	1440	2990	18.0%	39 4%	4 661	2.07	16714	402	0.0%	0.0%	0	0.37	
8	0.090	0.052	16.5%	0%	12.5	90.0	42500	8.91	1285	1.2	1700	2934	21.2%	39.2%	5,112	4.36	12379	402	0.0%	0.0%	0	0.62	0
9	0.070	0.057	21.4%	0%	12.5	76.3	58500	8.76	1681	1.2	1950	3559	17.9%	29.7%	7.076	4.75	21593	493	0.0%	0.0%	0	0.68	0
10	0.137	0.139	7.4%	0%	12.5	77.5	33000	9.00	785	1	2825	2491	30.0%	48.7%	3.744	3.74	9054	322	0.0%	-0.1%	0	0.00	0
11	0.188	0.128	8.9%	0%	12.5	77.5	28200	9.00	751	1	2825	2560	38.1%	58.1%	3.29	3.29	5372	305	-0.1%	-0.2%	0	0.00	0
12	0.023	0.121	6.4%	0%	12.5	0.0	37000	9.00	1053	0.8	2400	2050	17.7%	19.7%	4.105	1.85	21998	292	0.0%	0.0%	0	0.26	0
13	0.150	0.111	16.2%	0%	12.5	70.0	28200	8.92	813	1	2400	2195	32.7%	51.2%	3.374	3.37	7150	281	-0.1%	-0.1%	0	0.00	0
14	0.070	0.067	16.1%	0%	12.5	77.5	35000	9.36	1491	0.8	1125	2339	24.1%	41.6%	4.133	2.32	15012	324	0.0%	0.0%	0	0.33	0
15	0.043	0.020	10.1%	0%	12.5	63.0	35000	9.36	1429	0.8	1000	1367	12.0%	28.0%	3.977	1.30	18337	195	0.0%	0.0%	0	0.19	0
16	0.162	0.173	12.9%	0%	12.5	0.0	35800	9.40	742	1.2	2300	2080	35.3%	37.3%	3.818	2.84	11380	286	0.0%	0.0%	0	0.41	0
17	0.098	0.043	6.8%	0%	12.5	85.0	35800	9.40	753	0.8	2300	2453	19.6%	44.4%	3.489	2.46	12021	322	0.0%	0.0%	0	0.35	0
	0.051	0.117	8.4%	0%	12.5	0.0	35800	9.40	1082	1.2	2350	1725	20.7%	22.5%	4.173	2.18	16199	245	0.0%	0.0%	0	0.31	0
19	0.080	0.036	0.3%	0%	12.5	85.0	30800	9.40	1120	0.8	2350	2332	19.2%	40.6%	3.803	2.32	13919	318	0.0%	0.0%		0.33	
20	0.108	0.009	10.1%	0%	12.0	107.5	56000	9.69	1001	1.2	2500	1950	20.170	32.0%	5.00	5.34	12004	507	-0.1%	0.0%		0.54	
22	0.138	0.053	14.9%	0%	12.5	53.8	58500	9.27	1225	12	1900	3317	23.9%	33.8%	5.859	4 46	18898	457	0.0%	0.0%	0	0.64	
23	0.155	0.052	13.9%	0%	12.5	92.5	42000	9.31	958	1.2	1725	3463	28.9%	49.1%	4,534	4.53	8659	430	-0.1%	-0.1%	Ő	0.00	0
24	0.058	0.085	14.2%	0%	12.5	57.5	46000	9.43	1371	1	1900	2297	17.3%	27.7%	5.211	2.91	21632	326	0.0%	0.0%	0	0.42	0
25	0.240	0.171	29.6%	0%	12.5	107.5	46000	9.00	1310	1.2	1700	5148	51.6%	68.0%	5.58	5.58	3332	519	-0.2%	-0.3%	0	0.00	0
26	0.052	0.302	13.0%	0%	12.5	0.0	37000	9.00	910	1.2	2250	2001	33.0%	34.6%	4.409	2.72	13643	282	0.0%	0.0%	0	0.39	0
27	0.135	0.102	8.4%	0%	12.5	70.0	21600	9.04	606	1.2	2250	1862	31.7%	58.0%	2.558	2.56	3073	229	-0.1%	-0.2%	0	0.00	0
28	0.073	0.035	12.2%	0%	12.5	130.0	56500	9.00	1170	1.2	2050	3811	14.1%	36.8%	6.174	5.40	16426	513	0.0%	0.0%	0	0.77	0
29	0.069	0.042	9.9%	0%	12.5	122.5	56500	9.00	975	1.2	1500	3313	13.1%	36.3%	5,988	4,58	16459	456	0.0%	0.0%	0	0.65	0
30	0.070	0.049	12.6%	0%	12.5	107.5	50000	9.90	1187	0.8	1800	2632	16.6%	38.0%	4.739	2,54	19699	366	0.0%	0.0%	0	0.36	0
31	0.111	0.044	11.5%	0%	12.5	115.0	59000	9.69	1493	1.2	2700	3619	22.4%	40.0%	6.242	5.32	16360	497	0.0%	0.0%	0	0.76	0
32	0.072	0.038	10.0%	0%	12.5	100.0	42000	9.31	1515	1.2	1800	2814	18.2%	37.1%	5.038	4.15	13214	386	0.0%	0.0%	0	0.59	0
33	0.051	0.112	9.2%	0%	12.5	14.0	37000	9.00	1145	1.2	2400	1731	20.5%	25.2%	4.525	2.24	15900	247	0.0%	0.0%	0	0.32	0
34	0.130	0.076	13.3%	0%	12.5	92.5	37000	9.00	1142	1	2400	2117	28.2%	46.6%	4.42	3.22	10/95	291	0.0%	0.0%	- 0	0.46	0
35	0.022	0.393	6 10/	0%	12.0	<u>0.0</u>	40000	0.85	13/6	1.2	2700	2030	24.0%	20.2%	2.409	3.03	1/610	353	0.0%	0.0%		0.50	0
30	0.107	0.079	7 30/	0%	12.0	11.5	24000	0.97	0/0	1	2/00	1952	24.970	45.4%	3.3/0	3.21	22507	2//	0.0%	-0.1%	<u> </u>	0.1/	
	0.021	0.100	7 10/	0%	12.0	77 5	40000	9.09	1022	1.0	2600	3020	16 4%	34 19/	J.002	1.73	12190	400	0.0%	_0.1%		0.20	
30	0.034	0 133	5.3%	0%	12.5	0.0	40000	9.00	1033	12	2850	1833	17.6%	19.3%	4 656	2 27	18505	262	0.0%	0.0%		0.43	
40	0.045	0.053	3.7%	0%	12.5	85.0	35000	9.00	694	0.8	2850	2153	11.6%	38.0%	3.527	2.07	13427	295	0.0%	0.0%	ő	0.30	0
L	0.090	0.093	12.4%	0%	12.5	65.8	41278	9,16	1160	1.0	2132	2600	22.7%	37.1%	4 681	3.28	14905	348	0.0%	0.0%	0	0.35	
	0.0001	5.000	12,470	0.10			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.10			2102			57.170	4.501	0.20	,-000	111 00/	0.1%	0.10/	~	0.00)	

E-11

94.114

	Retrof	its: D	uct@25	Shade	Rduct		Sizing	dEER	Qahpt	Chg Fi	x		Progro	am De	sign I								
			75	Yes	8		Same	2	400	All													
				Pos	st-Re	etrofit	Site	Data					Res	ults - F	Post R	letrofi	t			Sav	ings		
			Duc	cts			A	ir Cor	dition	er	Shell		Energ	Y	Pea	ak Dei	mand		Energ	У	Pea	ak Den	nand
	Leakage	- Oper	Leakag	je @50	Cond	luction	Rat	ings	AirFlow	Charge	Leakage	Usag	je & Duc	t Loss	kW @5	5PM	1.89	Us	age & Dux	t Loss	kW @:	SPM	1.29
Site ID	sif2	rlf2	Dlkpct2	Dlkred%	UAr2	UAs2	Capr2	EERr2	Qah2	Cha2	Q50S2	Use2	Leaks2	Total2	kW2	DikW2	CapaPk2	kWh	Leaks	Total	kW	DikW	CapaPk
1	0.024	0.014	3.8%	81%	6.3	32.3	46500	11.00	1550	1	2055	1419	5.8%	11.7%	4.519	1.60	28397	1570	23.5%	28.0%	1.191	2.60	-11335
2	0.021	0.031	6.2%	71%	6.3	36.8	46000	11.43	1533	1	1589	1232	7.0%	13.7%	4.335	1.42	27534	166-	18.5%	25.9%	0.675	1.38	-7804
3	0.020	0.037	4.3%	66%	6.3	7.8	28000	10.97	933	1	1797	773	7.4%	10.6%	2.757	0,88	17741	61	16.4%	18.3%	1.056	0.92	-3056
4	0.025	0.016	4.7%	60%	6.3	42.5	34000	11.09	1133	1	1823	1015	6.1%	16.4%	3.282	1.19	19218	129	12.0%	22.6%	0.678	1.09	-4702
5	0.022	0.011	5.8%	68%	6.3	34.5	46000	10.90	1533	1	1454	1278	5.0%	11.4%	4.508	1.46		96	2 10.7%	16.1%	1.128	1.40	-6515
6	0.018	0.014	5.7%	71%	6.3	23.0	46000	10.90	1533	1	1360	1376	4.7%	9.2%	4.514	1.56	29225	97	11.4%	15.1%	1.18	1.38	-5759
7	0.025	0.009	5.3%	68%	6.3	50.0	42000	11.00	1400	1	1296	1483	5.3%	15.1%	4.074	1.74	24135	190	12.6%	24.3%	0.587	1.64	-7421
8	0.031	0.018	6.3%	66%	6.3	45.0	42500	10.91	1417	1	1516	1490	7.3%	16.0%	4.172	1.75	24254	184	13.9%	23.2%	0.94	3.24	-11875
9	0.018	0.014	6.4%	/5%	6.3	38.1	58500	10.76	1950		163/	1917	4.6%	10.2%	5.814	2.17	36590	213	13.2%	19.5%	1,263	3.26	-14997
10	0.067	0.068	3.8%	51%	6.3	38.8	33000	11.00	1100		2/1/	1469	18.0%	21.2%	3.28	1.85	15922	134	12.0%	21.4%	0.464	1.90	-6868
	0.083	0.007	4.1%	50% 469/	0.3	38.8	28200	11.00	940	!	2085	1307	19.8%	30.4%	2.792	1.67	12000	105	18.2%	27.5%	0.498	1.62	-/234
12	0.013	0.005	3.5%	40%	0.3	0.0	37000	10.02	1233		2329	1287	9.0%	9.9%	3.0/3	1.48	24100	105	0 0.1%	9.9%	0.433	0.64	-215/
14	0.034	0.025	4.270	60%	6.3	30.0	25000	11.92	1167	1	1016	1049	7 7%	10.9%	2.170	1.22	10904	1420	7 16 29/	32.370	0.090	2.13	-8234
15	0.020	0.027	8.0%	22%	63	31.5	35000	11.30	1167	1	077	817	7.5%	15.0%	3.314	0.07	20234	74	A 5%	12 8%	0.679	0.51	-4/92
16	0.038	0.041	3.3%	77%	6.3	00	35800	11.40	1193	1	2074	1053	10.7%	11.6%	3 397	1 19	22414	131	24.6%	25.6%	0.421	2.05	-11035
17	0.049	0.022	3.5%	50%	6.3	42.5	35800	11.40	1193	1	2223	1215	10.8%	20.5%	3.371	1.47	18948	156	8.7%	23.9%	0.118	1.34	-6927
18	0.016	0.038	2.9%	67%	6.3	0.0	35800	11.40	1193	1	2216	1032	6.9%	7.8%	3.394	1,16	23687	93	13.7%	14.7%	0.779	1.33	-7488
19	0.039	0.017	3.2%	52%	6.3	42.5	35800	11.40	1193	1	2274	1187	8.6%	18.3%	3.365	1.42	19620	146	10.6%	22.5%	0.438	1.23	-5702
20	0.025	0.016	4.0%	77%	6.3	32.5	59000	11.69	1967	1	1619	2174	6.2%	10.9%	5.4	2,49	36575	234	14.5%	21.9%	0.479	3.39	-17375
21	0.039	0.014	3.3%	75%	6.3	53.8	56900	11.27	1897	1	2272	2276	8.4%	16.0%	5.398	2.68	32378	318	19.3%	30.1%	0.575	3.29	-19475
22	0.032	0.013	4.2%	75%	6.3	26.9	58500	11.87	1950	1	1688	1763	7.0%	11.1%	5.269	2.02	36135	2010	16.9%	22.7%	0.59	3.08	-17238
23	0.053	0.018	5.3%	65%	6.3	46.3	42000	11.31	1400	1	1568	1604	11.2%	20.1%	3.977	1.93	22324	2289	17.6%	28.9%	0.557	2.60	-13665
24	0.015	0.021	3.9%	75%	6.3	28.8	46000	11.43	1533	1	1698	1515	4.8%	10.3%	4.318	1.73	28872	110	7 12.5%	17.4%	0.893	1.60	-7240
25	0.048	0.034	7.7%	80%	6.3	53.8	46000	11.00	1533	1	1297	1627	11.8%	21.0%	4.509	1.93	24320	404	0 39.5%	46.7%	1.072	3.65	-20988
26	0.018	0.105	4.9%	65%	6.3	0.0	37000	11.00	1233	1	2060	1110	13.9%	14.6%	3.73	1.28	23013	11/4	19.1%	19.9%	0.679	1.83	-9370
2/	0.073	0.055	4.8%	46%	6.3	35.0	21600	11.04	1000		2164	815	18.1%	30.7%	2.132	1.05	9008	12/0	13.5%	27.1%	0.426	1.51	-6486
	0.017	0.008	3.1%	//% 500/	6.3	05.0	50500	11.00	1003		1417	1707	3.0%	15.2%	5.4//	2.20	334/9	230	5 10.3%	23.0%	0.697	3.88	-1/053
- 29	0.031	0.019	4.0%	70%	6.3	52.0	50000	11.00	1663		16/1	1241	5 29/	14 0%	5.502	2.12	20201	165	7 11 29/	20.270	0.407	1 24	-15/50
	0.021	0.015	4.1%	70%	0.3	57.5	50000	11.90	1007		2474	1012	5.2%	14.0%	5 201	1.00	24250	220	15.9%	24.070	0,240	2.07	-9092
	0.030	0.012	3.47a	560/	6.3	57.5	42000	11.09	1400		1600	1612	7 3%	17.0%	3 975	1.81	23523	168	10.8%	20.4%	1.063	2 04	-10309
32	0.032	0.017	4.1 /0 A A%	55%	63	70	37000	11.00	1233		2280	1030	9.3%	11.5%	3 652	1 18	23310	94	11.1%	13.6%	0.873	1.37	-7409
- 35	0.023	0.031	4.4%	70%	63	46.3	37000	11.00	1233	1	2176	1111	9.1%	19.2%	3.61	1.31	20020	129	7 19.0%	27.3%	0.81	2.37	-9225
35	0.003	0.023	3.6%	87%	6.3	0.0	40000	10.85	1333	1	2158	1312	1.6%	2.0%	3.971	1.42	28193	157	23.8%	24.1%	1.438	2.62	-10582
36	0.054	0.040	3.2%	50%	6.3	38.8	28000	10.97	933	1	2618	1252	13.4%	24.4%	2.76	1.55	13940	1130	0 11.4%	20.9%	0.615	1.83	-5484
37	0.008	0.072	3.0%	61%	6.3	0.0	34000	11.09	1133	1	2483	1221	3.0%	3.5%	3.323	1.38	23602	89	5.2%	5.8%	0.538	0,60	-1005
38	0.023	0.037	3.3%	56%	6.3	38.8	40000	10.85	1333	1	2496	1692	7.9%	15.8%	3.981	2.00	23198	173	8 8.4%	18.2%	0.723	2.71	-10009
39	0.016	0.061	2.5%	54%	6.3	0.0	40000	11.00	1333	1	2768	1170	9.0%	9.8%	3.964	1.34	26053	92	5 8.6%	9.5%	0,693	1.26	-7549
40	0.032	0.038	2.7%	29%	6.3	42.5	35000	11.00	1167	1	2819	1161	9.4%	19.2%	3.437	1.40	19154	128	2.2%	18.8%	0.09	0.97	-5727
L	0.031	0.031	4.4%	63%	6.3	32.9	41278	11.16	1376	1.0	1960	1370	8.4%	15.1%	3.973	1.60	24291	1570	3 14.3%	21.9%	0.708	2.02	-9386
1																	%change	53.5%	63.0%	59.1%			

·

-

Post-Retroff Site Data Results - Post Retroff I Savings Ducts Air Conditioner Shell Energy Peak Demand. Laskap-Over Loss by 0201 Site Data Site Data </th <th></th> <th>Retrof</th> <th>its: Du</th> <th>uct@25</th> <th>Shade</th> <th>Rduct</th> <th></th> <th>Sizing</th> <th>dEER</th> <th>Qahpt</th> <th>Chg Fi</th> <th>×</th> <th></th> <th>Progra</th> <th>am De</th> <th>sign A</th> <th>with</th> <th>Resizing</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		Retrof	its: Du	uct@25	Shade	Rduct		Sizing	dEER	Qahpt	Chg Fi	×		Progra	am De	sign A	with	Resizing						
Test-Retroff: Site Data Test-Retroff: Site Data Savings Lawage-Over Leaking @50 Conv.Los WagePM Conv.Los Savings Test colspan="2">Savings Savings S				75	No	4		1.33	0	Same	None													
ULCIS Air Conditioner Shell Energy Peak Demand Lexage-Ope					Po	st-Re	etrofit	Site I	Data					Res	ults - F	Post R	etrofi	t			Sav	ings		
Leskage-Opert Leskage-Opert Control Carper Energy ArriFowr Charge Leskage Leskage 2. Toulz WW2 UNV2 Carger Energy Number Carper Energy Number CarperEnergy Number Carper Energy				Duc	ts			Ā	ir Cor	ndition	er	Shell		Energ	У	Pea	ak De	mand		Energ	IY	Pe	ak Dem	nand
Sibility: nit: Dipul2 Diverd ViLver2 UAs2 Carp2 Earlier John Condition Sibility Diversity		Leakage	- Oper	Leakag	e @50	Cond	uction	Rat	ings	AirFlow	Charge	Leakage	Usa	ge & Duc	t Loss	kW @5	PM	2.48	Us	age & Du	ct Loss	kW @:	iPM	0.70
1 0.024 0.014 3.9% e1% 1.25 6.25 6.5% 2.274 6.9% 2.24 1.28 1.46 677 2 0.021 0.037 6.2% 1.5% 1.40 0.025 0.037 6.2% 1.40 1.0217 289 1.76% 1.75% 3.84 6.2% 2.28 9.06 1.5% 1.40 0.025 0.015 6.7% 0.28 0.015 6.7% 0.28 0.015 6.7% 0.28 0.015 6.7% 0.28 0.05 0.025 0.016 0.7% 0.29 0.021 0.016 0.7% 0.29 0.021 0.016 0.7% 0.029 0.025 0.096 0.4% 1.2% 0.03 0.27% 0.28 0.036 0.29 <t< td=""><td>Site IC</td><td>slf2</td><td>rlf2</td><td>Dlkpct2</td><td>Dikred%</td><td>UAr2</td><td>UAs2</td><td>Capr2</td><td>EERr2</td><td>Qah2</td><td>Cha2</td><td>Q50S2</td><td>Use2</td><td>Leaks2</td><td>Total2</td><td>kW2</td><td>DikW2</td><td>CapaPk2</td><td>kWh</td><td>Leaks</td><td>Total</td><td>kW</td><td>DikW</td><td>CapaPk</td></t<>	Site IC	slf2	rlf2	Dlkpct2	Dikred%	UAr2	UAs2	Capr2	EERr2	Qah2	Cha2	Q50S2	Use2	Leaks2	Total2	kW2	DikW2	CapaPk2	kWh	Leaks	Total	kW	DikW	CapaPk
2 0.021 0.037 4.3% 2.80 0.86 1.699 2.40 1.2016 300 1.2016 300 1.2016 300 1.2016 1.201 1.777 1.778 1.777 1.778 1.778 1.777 1.778 1.777 1.778 1.777 1.778 1.777 1.778 1.777 1.778 1.777 1.778 1.777 1.778 1.777 1.778 1.777 1.778 1.777 1.778 1.777 1.778 1.777 1.778 1.777 1.778 1.777 1.778 1.777 1.778 1.777 1.778 1.777 1.778 1.777 1.778 1.777 1.778 1.777 1.778 1.7774 1.777 1.778 <td>1</td> <td>0.024</td> <td>0.014</td> <td>3.8%</td> <td>81%</td> <td>12.5</td> <td>64.5</td> <td>32188</td> <td>9.00</td> <td>1099</td> <td>1</td> <td>2055</td> <td>2254</td> <td>5.8%</td> <td>22.3%</td> <td>3.86</td> <td>2.74</td> <td>16387</td> <td>74</td> <td>1 23.5%</td> <td>17.4%</td> <td>1.85</td> <td>1.46</td> <td>675</td>	1	0.024	0.014	3.8%	81%	12.5	64.5	32188	9.00	1099	1	2055	2254	5.8%	22.3%	3.86	2.74	16387	74	1 23.5%	17.4%	1.85	1.46	675
3 0.020 0.037 4.5% 66% 1.25 16.5 11.1% 1.61 0.239 4.68 4 0.025 0.016 4.7% 6.80 225 16.06 0.27 2.7% 2.28 0.64 1.38 6.63 1.35 0.63 5.27 1.17% 1.24 6.46 0.61 0.76 0.64 0.44 1.7% 2.84 1.46 0.265 0.664 0.24 1.35 0.63 5.27 0.67 0.265 0.202 0.64 0.44 1.7% 2.84 1.46 0.261 0.265 0.261 0.26 0.27 0.26 0.27 0.26 0.27		0.021	0.031	6.2%	71%	12.5	73.5	28175	9.43	899	0.8	1589	2506	8.0%	32.5%	2.99	2,40	12916	38	9 17.6%	7.0%	2.02	0.39	6813
4 0.005 0.016 4.7% 0.07 1.25 0.03 0.21 0.04% 1.35 0.023 0.22 0.03 0.24% 1.35 0.03 0.21 6 0.016 5.7% 7.1% 1.25 4.60 0.028 0.28 0.5% 2.44% 0.84 2.264 1.36% 0.47% 2.22 0.22 0.03 6.6% 1.25 0.05 0.6% 2.7% 0.05 0.6% 2.7% 0.05 0.6% 2.7% 0.05 0.06% 2.7% 1.5% 2.20 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.014 0.4% 1.26 0.75 0.018 0.289 0.014 0.4% 1.26 0.75 2.23 1.7% 2.85 1.47% 2.86 1.45% 1.26 0.75 0.23 2.77 2.82 2.00 0.44 2.00 0.00 4.64 1.26 0.02 0.00 4.64 0.26 0.77 1.50 0.16 0.16 0.16 1.266 2.166 1.79% 1.28 1.78	3	0.020	0.037	4.3%	66%	12.5	15.5	16830	8.97	738	1	1797	1178	8.5%	17.8%	2.21	1.40	10217	20	9 15.2%	11.1%	1.61	0.39	4468
0 0 0 0 1 1 0		0.025	0.016	4.7%	60%	12.5	85.0	22600	9.09	8/8	0.8	1823	2231	7.5%	39.4%	2.61	2.25	9306	8	2 10.6%	-0.4%	1.35	0.03	5210
0 0		0.022	0.011	5.0%	71%	12.5	46.0	20132	8.00	1061	1	1260	2100	1.8%	17 0%	3.42	2.04	16840	- 14	11 29/	E 1%	2.22	0.22	8049
B 0.031 0.008 6.3% 66% 12.5 0.00 92165 0.01 1516 2226 3.83 10807 407 13.7% 6.0% 12.6 1517 9.018 0.018 6.3% 12.6 1537 3491 1.4% 21.9% 5.01 4.50 1507 6.03 13.2% 7.8% 2.07 0.64 4.04 10 0.067 0.068 3.8% 1.0 1.0 1.0 1.3% 6.9% 1.2 1.0 1.0 1.0 1.0 0.68 3.8% 1.0 1.0 1.0 0.03 0.068 3.8% 1.0 1.0 1.0 0.03 0.01 0.02 0.00 7.80 0.02 1.0 1.0 0.02 0.01 1.0 0.02 0.01 1.0 0.02 0.01 1.0 0.02 0.01 1.0 0.02 0.01 1.0 0.01 1.0 0.01 1.0 0.01 0.01 0.01 0.010 0.01 <		0.015	0.014	5.3%	68%	12.5	100.0	32772	9.00	1001	0.8	1296	3050	5.9%	34 1%	3.61	3.00	14269	24	2 12 1%	5 7%	1.05	0.39	2445
9 0.018 0.014 6.4% 75% 12.5 73.3 14937 0.75 1208 1.2 1637 2840 4.7% 21.9% 5.01 4.50 17550 503 13.2% 7.5% 2.07 0.64 464 10 0.063 0.067 1.1% 1.2% 7.7.5 2232 1.068 3.8% 2.78 2.78 600 6.57 6.50 1.2% 7.9% 0.07 6.56 1.2% 7.9% 0.07 6.56 1.2% 7.9% 0.07 6.56 1.2% 7.9% 0.07 6.56 1.2% 7.9% 0.07 6.56 1.2% 7.9% 1.2% 0.27 0.23 9.14 1.2% 0.21 1.2% 1.	8	0.031	0.018	6.3%	66%	12.5	90.0	32165	8.91	972	1.2	1516	2929	7.5%	32.2%	3.83	3.83	10807	40	7 13.7%	6.9%	1.00	1.16	1572
10 0.067 0.068 3.8% 51% 12.5 77.5 232325 0.00 674 1 2717 2391 17.8% 3.89% 3.17 3.17 3.17 9688 11 0.063 0.057 4.1% 55% 12.5 0.77.5 24205 9.00 645 1 2685 2160 17.9% 43.8% 2.78 2.78 725 669 20.0% 14.2% 0.51 0.65 1.6% 1.6% 1.6% 1.6% 1.8% 3.2% 2.78 2.78 725 775 1.6% 1.6% 1.6% 1.6% 1.2% 2.98 1.6% <td< td=""><td>9</td><td>0.018</td><td>0.014</td><td>6.4%</td><td>75%</td><td>12.5</td><td>76.3</td><td>41957</td><td>8.76</td><td>1206</td><td>1.2</td><td>1637</td><td>3549</td><td>4.7%</td><td>21.9%</td><td>5.01</td><td>4.50</td><td>17550</td><td>50</td><td>3 13.2%</td><td>7.8%</td><td>2.07</td><td>0.94</td><td>4043</td></td<>	9	0.018	0.014	6.4%	75%	12.5	76.3	41957	8.76	1206	1.2	1637	3549	4.7%	21.9%	5.01	4.50	17550	50	3 13.2%	7.8%	2.07	0.94	4043
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	0.067	0.068	3.8%	51%	12.5	77.5	28325	9.00	674	1	2717	2391	15.4%	38.9%	3.17	3,17	9688	42	2 14.6%	9.7%	0.57	0.57	-634
12 0.013 0.066 3.5% 4.6% 12.5 0.00 766 0.68 2220 2100 12.7% 2.33 9146 13 0.034 0.025 4.2% 77% 12.5 7.02 2305 8.92 6711 1 2100 1777 8.1% 3.2% 2.27 2.33 9146 14 0.028 0.027 7.2% 60% 12.5 63.0 1106 0.8 1016 2335 10.1% 3.4% 2.70 1.44% 1.44 7.64 1.66 1.04 1.9% 6.7% 1.13 0.034 0.28 9.77 1.24% 2.42 1.98 1106 0.03 6.7% 1.13 0.034 0.2% 0.28 0.27 3396 17 0.049 0.022 3.5% 65% 12.5 0.02 2.308 9.40 648 1.2 2216 1.69 9.7% 1.24% 2.44 1.68 10.05 1.13 9.5% 0.2% 0.95% 1.231 2.7% 1.13 1.233 1.13 9.5% 0.2%	11	0.083	0.057	4.1%	56%	12.5	77.5	24205	9.00	645	1	2685	2196	17.9%	43.8%	2.78	2.78	7275	66	20.0%	14.2%	0.51	0.51	-1904
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12	0.013	0.065	3.5%	46%	12.5	0.0	27004	9.00	768	0.8	2329	2150	9.9%	12.7%	2.95	1.93	17025	19	2 7.9%	7.0%	1.15	0.18	4973
14 0.028 0.027 7.2% 60% 12.5 77.5 25971 9.36 1106 0.8 9077 1704 9.3% 3.007 2.207 184 7631 2.31 2.7% 1.12% 1.9 0.34 2007 16 0.038 0.041 3.3% 77% 12.5 0.02 2.333 9.40 477 1.2 2074 1689 9.1% 12.4% 2.42 1.98 11053 677 1.25 0.02 308 9.40 477 1.2 2216 1699 7.1% 10.2% 2.53 199 12325 10.2 308 9.40 688 1.2 2216 1699 7.1% 10.2% 2.53 109 1238% 0.27 308 1.47 1.04 0.09 3655 123 1.11 1.13 1.13 .123 1.23 1.05 0.27 308 1.25 1619 3007 5.0% 2.263 5.01 1.263 1.38 1.276 1.43 9.7% 1.4% 1.40 0.09 36.27 1.03 1.28	13	0.034	0.025	4.2%	77%	12.5	70.0	23305	8.92	671	1	2100	1777	8.1%	33.2%	2.72	2.33	9149	70	24.6%	17.9%	0.65	1.04	-1999
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	0.028	0.027	7.2%	60%	12.5	77.5	25971	9.36	1106	0.8	1016	2353	10.1%	34.8%	3.00	2.31	12211	31	13.9%	6.7%	1.13	0.34	2801
16 0.038 0.041 3.3% 77% 12.5 80.0 9.40 477 1.2 207 1689 9.1% 12.4% 2.42 1.89 11053 67% 2.25 85.0 689 9.1% 12.0% 42.24 1.89 11053 67% 0.25 85.0 25.0 54.0 62.0% 9.40 688 1.2 2216 1689 7.1% 10.2% 2.63 1.99 12325 131 9.5% 0.2% 0.95 0.27 3394 19 0.039 0.017 3.2% 57% 12.5 50.0 50.45 9.69 925 1.2 257.0 50.4 2.5% 0.87 1.33 9.7% 1.4% 0.07 1.4% 1.4% 0.08 0.84 <td< td=""><td>15</td><td>0.033</td><td>0.016</td><td>8.0%</td><td>22%</td><td>12.5</td><td>63.0</td><td>18173</td><td>9.36</td><td>742</td><td>0.8</td><td>977</td><td>1794</td><td>9.3%</td><td>39.2%</td><td>2.07</td><td>1.84</td><td>7631</td><td>-23</td><td>1 2.7%</td><td>-11.2%</td><td>1.91</td><td>-0.36</td><td>10706</td></td<>	15	0.033	0.016	8.0%	22%	12.5	63.0	18173	9.36	742	0.8	977	1794	9.3%	39.2%	2.07	1.84	7631	-23	1 2.7%	-11.2%	1.91	-0.36	10706
17 0.049 0.022 3.5% 50% 12.5 60.030 26087 9.40 648 0.0.6 22216 1690 71% 10.2% 2.63 1.99 12325 19 0.039 0.017 3.2% 52% 12.5 80.0 2614 9.40 623 0.02 2074 2508 9.5% 39.4% 2.76 2.55 10267 20 0.025 0.016 4.0% 77% 12.5 65.0 50465 9.69 925 1.2 1619 39.7% 5.34 1716 15.6% 12.6% 0.87 1.13 -75% 1.25 15.35 1.13 1.6% 0.64 422 22 0.032 0.011 3.2% 75% 12.5 5.38 41628 9.87 672 1.2 1688 3100 6.1% 2.08% 4.165 3.88 16663 673 17.7% 12.9% 1.71 1.22 1982 23 0.032 0.011 5.3% 65% 1.25 1.55 34479 9.43 1.45% 3.84	16	0.038	0.041	3.3%	77%	12.5	0.0	23038	9.40	477	1.2	2074	1689	9.1%	12.4%	2.42	1.98	11053	67	7 26.2%	24.8%	1.40	1.26	327
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	0.049	0.022	3.5%	50%	12.5	85.0	26087	9.40	548	0.8	2223	2645	10.0%	44.2%	2,54	2.54	8625	13	9.5%	0.2%	0.95	0.27	3396
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	18	0.016	0.038	2.9%	67%	12.5	0.0	23088	9.40	698	1.2	2216	1689	7.1%	10.2%	2.63	1.99	12325	28	1 13.5%	12.3%	1.55	0.51	3874
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19	0.039	0.017	3.2%	52%	12.5	85.0	26144	9.40	823	0.8	2274	2508	9.5%	39.4%	2.76	2.55	10267	14	9.7%	1.4%	1.04	0.09	3652
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20	0.025	0.016	4.0%	77%	12.5	65.0	50465	9.69	925	1.2	1619	3807	5.0%	20.2%	5.01	4.75	20437	70	5 15.6%	12.6%	0.87	1.13	-1237
22 0.032 0.013 4.2% 73% 12.3 0.3% 672 1.2 1086 3100 0.1% 20.0% 4.10 3.60 10013 17.7% 12.9% 1.7.1% <t< td=""><td></td><td>0.039</td><td>0.014</td><td>3.3%</td><td>75%</td><td>12.5</td><td>E2 0</td><td>51000</td><td>9.27</td><td>982</td><td>1.2</td><td>1600</td><td>4202</td><td>6 19/</td><td>29.0%</td><td>5.34</td><td>5.34</td><td>1/190</td><td>119</td><td>1 20.5%</td><td>10.5%</td><td>0.64</td><td>0.64</td><td>-4292</td></t<>		0.039	0.014	3.3%	75%	12.5	E2 0	51000	9.27	982	1.2	1600	4202	6 19/	29.0%	5.34	5.34	1/190	119	1 20.5%	10.5%	0.64	0.64	-4292
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	22	0.052	0.013	4.2%	65%	12.5	02.5	34420	9.07	795	1.2	1000	3100	0.1%	20.0%	4.15	3.00	10903			12.9%	1.71	1.22	1935
2 0.031 0.033 0.0	24	0.005	0.010	3.9%	75%	12.5	57.5	34979	9.43	1042	1	1698	2323	4.5%	19.2%	3.88	2.80	18428	29	12.8%	8.5%	1 33	0.64	3204
26 0.018 0.105 4.9% 65% 12.5 0.0 22934 9.00 564 1.2 2060 1799 12.5% 15.6% 2.64 2.17 11079 27 0.073 0.055 4.8% 46% 12.5 70.0 15160 9.04 425 1.2 2164 1841 17.8% 55.9% 1.78 1.78 2107 28 0.017 0.008 3.1% 77% 12.5 130.0 44274 9.00 917 1.2 1858 3983 3.3% 32.9% 4.82 4.82 13756 29 0.031 0.019 4.6% 56% 12.5 107.5 32600 9.90 774 0.8 1641 2893 5.1% 38.4% 3.07 2.91 12376 31 0.030 0.012 3.4% 70% 12.5 100.0 3603 9.31 1212 1.2 2474 3523 6.3% 31.4% 4.52 4.52 14.50 10.0% 1.6% 1.6% 1.0.4% 1.57 0.68 0.55	25	0.048	0.034	7.7%	80%	12.5	107.5	34812	9.00	991	1.2	1297	3294	11.8%	38.5%	4.06	4.06	9908	237	3 39.5%	29.2%	1.52	1.52	-6576
27 0.073 0.055 4.8% 46% 12.5 70.0 15160 9.04 425 1.2 2164 1841 17.8% 55.9% 1.78 1.78 2107 28 0.017 0.008 3.1% 77% 12.5 130.0 44274 9.00 917 1.2 1858 3983 3.3% 32.9% 4.82 4.82 13756 29 0.031 0.019 4.6% 56% 12.5 122.5 38789 9.00 669 1.2 1417 3790 5.9% 39.1% 4.11 4.11 10177 -21 7.2% -2.9% 1.88 1.12 6282 30 0.021 0.015 4.1% 70% 12.5 107.5 32600 9.09 774 0.8 1641 2893 5.1% 38.4% 3.07 2.91 12376 105 11.5% -0.4% 1.67 -0.01 7321 31 0.030 0.017 4.7% 56% 12.5 10.0 33603 9.31 1212 1.2 1699 9.7%	26	0.018	0.105	4.9%	65%	12.5	0.0	22934	9.00	564	1.2	2060	1799	12.5%	15.6%	2.64	2.17	11079	48	5 20.4%	19.0%	1.77	0.94	2563
28 0.017 0.008 3.1% 77% 12.5 130.0 44274 9.00 917 1.2 1858 3983 3.3% 32.9% 4.82 13756 29 0.031 0.019 4.6% 56% 12.5 122.5 38789 9.00 669 1.2 1417 3790 5.9% 39.1% 4.11 4.11 10177 30 0.021 0.015 4.1% 70% 12.5 107.5 32600 9.90 774 0.8 1641 2893 5.1% 38.4% 3.07 2.91 12376 105 11.5% -0.4% 1.67 -0.01 7321 31 0.030 0.017 4.7% 56% 12.5 100.0 3603 9.31 1212 1.2 1699 2939 8.2% 32.4% 3.99 3.99 11607 261 10.0% 4.6% 1.04 0.75 1607 33 0.023 0.051 4.4% 70% 12.5 14.0 21910 9.00 678 1.2 2280 1782 9.7%	27	0.073	0.055	4.8%	46%	12.5	70.0	15160	9.04	425	1.2	2164	1841	17.8%	55.9%	1.78	1.78	2107	25	13.8%	1.9%	0.78	0.78	965
29 0.031 0.019 4.6% 56% 12.5 122.5 38789 9.00 669 1.2 1417 3790 5.9% 39.1% 4.11 4.11 10177 30 0.021 0.015 4.1% 70% 12.5 107.5 32600 9.90 774 0.8 1641 2893 5.1% 38.4% 3.07 2.91 12378 105 11.5% -0.4% 1.67 -0.01 7321 31 0.030 0.012 3.4% 73% 12.5 115.0 43038 9.69 1089 1.2 2474 3523 6.3% 31.4% 4.52 4.52 14301 592 16.1% 8.6% 1.72 1.56 2059 32 0.032 0.017 4.7% 56% 12.5 14.0 21910 9.00 678 1.2 2280 1782 9.7% 18.1% 2.63 2.21 10330 196 10.7% 7.0% 1.89 0.35 5571 34 0.039 0.023 4.4% 70% 12.5 9.0	28	0.017	0.008	3.1%	77%	12.5	130.0	44274	9.00	917	1.2	1858	3983	3.3%	32.9%	4.82	4.82	13756	34	10.8%	3.9%	1.35	1.35	2670
30 0.021 0.015 4.1% 70% 12.5 107.5 32600 9.90 774 0.8 1641 2893 5.1% 38.4% 3.07 2.91 12378 105 11.5% -0.4% 1.67 -0.01 7321 31 0.030 0.012 3.4% 73% 12.5 115.0 43038 9.69 1089 1.2 2474 3523 6.3% 31.4% 4.52 4.52 14301 592 16.1% 8.6% 1.72 1.56 2059 32 0.032 0.017 4.7% 56% 12.5 14.0 21910 9.00 678 1.2 2280 1782 9.7% 18.1% 2.63 2.21 10330 196 10.7% 7.0% 1.89 0.35 5571 34 0.039 0.023 4.4% 70% 12.5 9.2 24230 9.00 748 1 216 2168 1.8% 3.0% 3.89 2.43 18742 723 23.6% 23.1% 1.52 1.61 -1131 36 0.054 <	29	0.031	0.019	4.6%	56%	12.5	122.5	38789	9.00	669	1.2	1417	3790	5.9%	39.1%	4.11	4.11	10177	-2	7.2%	-2.9%	1.88	1.12	6282
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	30	0.021	0.015	4.1%	70%	12.5	107.5	32600	9.90	774	0.8	1641	2893	5.1%	38.4%	3.07	2.91	12378	10	5 11.5%	-0.4%	1.67	-0.01	7321
32 0.032 0.017 4.7% 56% 12.5 100.0 33603 9.31 1212 1.2 1699 2939 8.2% 32.4% 3.99 3.99 11607 33 0.023 0.051 4.4% 55% 12.5 14.0 21910 9.00 678 1.2 2280 1782 9.7% 18.1% 2.63 2.21 10330 34 0.039 0.023 4.4% 70% 12.5 92.5 24230 9.00 748 1 2176 2014 8.8% 38.5% 2.85 2.85 8352 35 0.003 0.049 3.6% 87% 12.5 0.0 31282 8.85 1076 1.2 2158 2168 1.8% 3.0% 3.89 2.43 18742 723 23.6% 23.1% 1.52 1.61 -1131 36 0.054 0.040 3.2% 50% 12.5 77.5 24796 8.97 776 1 2618 2079 13.0% 37.4% 2.95 2.94 9010 303 11	31	0.030	0.012	3.4%	73%	12.5	115.0	43038	9.69	1089	1.2	2474	3523	6.3%	31.4%	4.52	4.52	14301	593	2 16.1%	8.6%	1.72	1.56	2059
33 0.023 0.051 4.4% 55% 12.5 14.0 21910 9.00 678 1.2 2280 1782 9.7% 18.1% 2.63 2.21 10330 196 10.7% 7.0% 1.89 0.35 5571 34 0.039 0.023 4.4% 70% 12.5 92.5 24230 9.00 748 1 2176 2014 8.8% 38.5% 2.85 2.85 8352 35 0.003 0.049 3.6% 87% 12.5 0.0 31282 8.85 1076 1.2 2158 2168 1.8% 3.0% 3.89 2.43 18742 723 23.6% 23.1% 1.52 1.61 -1131 36 0.054 0.040 3.2% 50% 12.5 77.5 24796 8.97 776 1 2618 2079 13.0% 37.4% 2.95 2.94 9010 303 11.8% 7.9% 0.43 0.44 -553 37 0.008 0.072 3.0% 61% 12.5 77.5 3676	32	0.032	0.017	4.7%	56%	12.5	100.0	33603	9.31	1212	1.2	1699	2939	8.2%	32.4%	3.99	3.99	11607	26	10.0%	4.6%	1.04	0.75	1607
34 0.039 0.023 4.4% 70% 12.5 92.5 24230 9.00 748 1 2176 2014 8.8% 38.5% 2.85 2.85 8352 394 19.3% 8.0% 1.57 0.83 2443 35 0.003 0.049 3.6% 87% 12.5 0.0 31282 8.85 1076 1.2 2158 2168 1.8% 3.0% 3.89 2.43 18742 723 23.6% 23.1% 1.52 1.61 -1131 36 0.054 0.040 3.2% 50% 12.5 77.5 24796 8.97 776 1 2618 2079 13.0% 37.4% 2.95 2.94 9010 303 11.8% 7.9% 0.43 0.44 -553 37 0.008 0.072 3.0% 61% 12.5 77.5 36766 8.85 950 1.2 2496 3139 7.5% 27.7% 4.28 4.21 13568 291 8.9% 0.43 0.50 -378 39 0.016 0.061	33	0.023	0.051	4.4%	55%	12.5	14.0	21910	9.00	678	1.2	2280	1782	9.7%	18.1%	2.63	2.21	10330	196	5 10.7%	7.0%	1.89	0.35	5571
35 0.003 0.049 3.6% 87% 12.5 0.0 31282 8.85 1076 1.2 2158 2168 1.8% 3.0% 3.89 2.43 18742 723 23.6% 23.1% 1.52 1.61 -1131 36 0.054 0.040 3.2% 50% 12.5 77.5 24796 8.97 776 1 2618 2079 13.0% 37.4% 2.95 2.94 9010 303 11.8% 7.9% 0.43 0.44 -553 37 0.008 0.072 3.0% 61% 12.5 0.0 27598 9.09 880 0.8 2483 2013 3.3% 4.8% 3.05 1.81 18964 105 4.9% 4.5% 0.81 0.16 3633 38 0.023 0.037 3.3% 56% 12.5 77.5 36766 8.85 950 1.2 2496 3139 7.5% 27.7% 4.28 4.21 13568 291 8.9% 0.43 0.50 -378 39 0.016 0.061	34	0.039	0.023	4.4%	70%	12.5	92.5	24230	9.00	748	1	2176	2014	8.8%	38.5%	2.85	2.85	8352	394	19.3%	8.0%	1.57	0.83	2443
36 0.054 0.040 3.2% 50% 12.5 77.5 24796 8.97 776 1 2618 2079 13.0% 37.4% 2.95 2.94 9010 303 11.8% 7.9% 0.43 0.44 -553 37 0.008 0.072 3.0% 61% 12.5 0.0 27598 9.09 880 0.8 2483 2013 3.3% 4.8% 3.05 1.81 18964 105 4.9% 4.5% 0.81 0.16 3633 38 0.023 0.037 3.3% 56% 12.5 77.5 36766 8.85 950 1.2 2496 3139 7.5% 27.7% 4.28 4.21 13568 291 8.9% 6.3% 0.43 0.50 -378 39 0.016 0.061 2.5% 54% 12.5 0.0 24586 9.00 624 1.2 2768 1903 8.4% 11.3% 2.82 2.27 12554 192 9.3% 8.0% 1.84 0.33 5951 40 0.032 <td>35</td> <td>0.003</td> <td>0.049</td> <td>3.6%</td> <td>87%</td> <td>12.5</td> <td>0.0</td> <td>31282</td> <td>8.85</td> <td>1076</td> <td>1.2</td> <td>2158</td> <td>2168</td> <td>1.8%</td> <td>3.0%</td> <td>3.89</td> <td>2.43</td> <td>18742</td> <td>72</td> <td>3 23.6%</td> <td>23.1%</td> <td>1.52</td> <td>1.61</td> <td>-1131</td>	35	0.003	0.049	3.6%	87%	12.5	0.0	31282	8.85	1076	1.2	2158	2168	1.8%	3.0%	3.89	2.43	18742	72	3 23.6%	23.1%	1.52	1.61	-1131
37 0.008 0.072 3.0% 61% 12.5 0.0 27398 9.09 880 0.8 2483 2013 3.3% 4.8% 3.05 1.81 18904 105 4.9% 4.5% 0.81 0.16 3633 38 0.023 0.037 3.3% 56% 12.5 77.5 36766 8.85 950 1.2 2496 3139 7.5% 27.7% 4.28 4.21 13568 291 8.9% 6.3% 0.43 0.50 -378 39 0.016 0.061 2.5% 54% 12.5 0.0 24586 9.00 624 1.2 2768 1903 8.4% 11.3% 2.82 2.27 12554 192 9.3% 8.0% 1.84 0.33 5951 40 0.032 0.038 2.7% 29% 12.5 85.0 24360 9.00 483 0.8 2819 2609 8.3% 45.1% 2.45 7903 -161 3.3% -7.1% 1.07 -0.08 5525 0.032 0.038 2.	36	0.054	0.040	3.2%	50%	12.5	11.5	24/96	8.97	7/6		2618	20/9	13.0%	31.4%	2.95	2.94	9010		11.8%	7.9%	0.43	0.44	-553
36 0.023 0.037 3.376 56% 12.3 17.3 36766 6.65 950 1.2 2495 3135 7.376 27.176 4.20 4.21 13506 291 8.9% 6.3% 0.43 0.50 -378 39 0.016 0.061 2.5% 54% 12.5 0.0 24586 9.00 624 1.2 2768 1903 8.4% 11.3% 2.82 2.27 12554 192 9.3% 8.0% 1.84 0.33 5951 40 0.032 0.038 2.7% 29% 12.5 85.0 24360 9.00 483 0.8 2819 2609 8.3% 45.1% 2.45 7903 -161 3.3% -7.1% 1.07 -0.08 5525	$\frac{37}{37}$	0.008	0.0/2	3.0%	56%	12.5	77 =	21098	9.09	880	0.8	2483	2013	3.3%	4.8%	3.05	1.81	12569	- 10	4.9%	4.5%	0.81	0.16	3633
35 0.010 0.001 2.076 0476 1.20 0.001 0.001 0.001 1.20 0.001 1.001 0.001 1.001 0.001	38	0.023	0.037	3.3%	5/0/	12.5	11.5	24596	0.00	000	1.2	2490	1002	7.5% 8 A%	11 20/	9.20	9.21	12554	- 29	0.9%	0.3%	1.043	0.50	-3/8
	40	0.010	0.038	2.5%	29%	12.5	85.0	24360	9.00	483	0.8	2819	2609	8,3%	45.1%	2.45	2.45	7903	-16	3.3%	-7.1%	1.04	-0.03	5525
	L	0.0021	0.031	A A%	63%	12.5	65.8	300931	9 16	837	1.0	1960	2539	8.2%	28.7%	3.36	297	12373	A10	14 4%	8.3%	1 22	100.0	2533
%change 13.9% 63.7% 22.4%		0.001	5.551	4.470	0078	. 2.0			0.10			,000						%chanae	13.9%	63.7%	22.4%		0.00	2000

.

	Retro	its: Du	uct@25	Shade	Rduct		Sizing	dEER	Qahpt	Chg Fi	×		Progra	am De	sign B	with	Resizing						
			75	No	8		1.14	0	Same	None							_						
				Po	st-Re	etrofit	Site I	Data					Res	ults - F	ost R	letrofi	t			Sav	ings		
			Due	cts			A	ir Cor	ndition	er	Shell		Energ	<u>у</u>	Pe	ak Dei	nand		Energ	y	Pea	ik Dem	nand
	Leakage	- Oper	Leaka	je @50	Cond	uction	Rat	ings	AirFlow	Charge	Leakage	Usa	ge & Duc	t Loss	kW @5	5PM	2.14	U	age & Du	ct Loss	kW @5	PM	1.04
Site ID	slf2	rlf2	Dlkpct2	Dikred%	UAr2	UAs2	Capr2	EERr2	Qah2	Cha2	Q50S2	Use2	Leaks2	Total2	kW2	DikW2	CapaPk2	kWh	Leaks	Totai	kW	DikW	CapaPk
1	0.024	0.014	3.8%	81%	6.3	32.3	27557	9.00	941	1	2055	2076	5.8%	15,6%	3.296	2.42	15847	91	9 23.5%	24.1%	2.414	1.78	1214
2	0.021	0.031	6.2%	71%	6.3	36.8	24121	9.43	770	0.8	1589	2193	8.0%	22.8%	2.557	2.03	13053	70	3 17.6%	16.8%	2.454	0.76	6677
3	0.020	0.037	4.3%	66%	6.3	7.8	14409	8.97	632	1	1797	1125	8.5%	14.0%	1.883	1.31	9321	26	1 15.2%	14.9%	1.931	0.48	5364
4	0.025	0.016	4.1%	60%	6.3	42.5	19349	9.09	/52	0,8	1823	1858	7.5%	20.8%	2.226	1.76	10140	4:	4 10.6%	12.2%	1./34	0.52	4376
6	0.022	0.011	5.0%	71%	6.3	22.0	24000	8.90	001		1454	1900	J. 170	12.8%	2.92	2.2/	15700	- 34	9 10.0%	10.0%	2.717	0.59	7676
7	0.010	0.009	5.3%	68%	6.3	50.0	28057	9.00	899	08	1296	2617	5.9%	22.9%	3 089	2.32	14846	7	5 12 19	16.5%	2.550	0.02	1868
8	0.031	0.018	6.3%	66%	6.3	45.0	27537	8.91	832	1.2	1516	2563	7.5%	22.4%	3.271	3.27	11573	7	3 13.7%	16.8%	1.841	1.72	807
9	0.018	0.014	6.4%	75%	6.3	38.1	35921	8.76	1032	1.2	1637	3249	4.6%	15.0%	4.285	3.94	17136	80	3 13.2%	14.7%	2.792	1.49	4457
10	0.067	0.068	3.8%	51%	6.3	38.8	24250	9.00	577	1	2717	2084	15.4%	29.7%	2.711	2.69	10331	73	0 14.6%	18.9%	1.033	1.05	-1277
11	0.083	0.057	4.1%	56%	6.3	38.8	20723	9.00	552	1	2685	1874	17.9%	33.7%	2.372	2.37	8195	99	1 20.0%	24.3%	0.918	0.92	-2823
12	0.013	0.065	3.5%	46%	6.3	0.0	23119	9.00	658	0.8	2329	2104	9.9%	<u>11.6%</u>	2.523	1.91	14756	23	8 7.9%	8.2%	1.583	0.21	7242
13	0.034	0.025	4.2%	77%	6.3	35.0	19953	8.92	575	1	2100	1552	8.0%	23.3%	2.324	1.88	9708	92	5 24.6%	27.8%	1.051	1.50	-2559
14	0.028	0.027	7.2%	60%	6.3	38.8	22235	9.36	947	0.8	1016	2046	10.1%	24.9%	2.566	1.93	12483	6	7 13.9%	16.6%	1.568	0.72	2529
15	0.033	0.016	8.0%	22%	6.3	31.5	15559	9.36	635	0.8	977	1510	9.3%	27.3%	1.765	1.46	8195		2 2.7%	0.6%	2.213	0.02	10142
16	0.038	0.041	3.3%	- 11% 50%	6.3	0.0	19723	9.40	409	1.2	2074	1651	9,1%	11,1%	2.067	1.94	9657		5 26.2%	26.2%	1./51	1.30	1/23
19	0.049	0.022	3.5%	50% 67%	6.3	42.5	10767	9.40	409	1.2	2223	1657	7 1%	<u>31,1%</u> <u>80%</u>	2.109	2.13	902/	- 21	3 12 5%	13.3%	1.32	0.67	2394
19	0.010	0.030	3.2%	52%	63	42.5	22383	9.40	704	0.8	2210	2113	9.5%	27.6%	2.36	203	11007	5	8 97%	13.0%	1.929	0.55	2912
20	0.025	0.016	4.0%	77%	6.3	32.5	43205	9.69	792	1.2	1619	3523	5.0%	14.1%	4,286	4.27	19476	99	1 15.6%	18.7%	1.594	1.61	-275
21	0.039	0.014	3.3%	75%	6.3	53.8	43710	9.27	841	1.2	2272	3787	7.1%	20.7%	4,566	4.57	17656	166	9 20.5%	25.4%	1.407	1.41	-4753
22	0.032	0.013	4.2%	75%	6.3	26.9	35640	9.87	746	1.2	1688	2873	6.1%	14.9%	3.548	3.49	16156	90	0 17.7%	18.8%	2.311	1.61	2742
23	0.053	0.018	5.3%	65%	6.3	46.3	29468	9.31	672	1.2	1568	2708	10.2%	26.2%	3,159	3.16	10972	118	4 18.6%	22.8%	1.375	1.38	-2313
24	0.015	0.021	3.9%	75%	6.3	28.8	29947	9.43	892	1	1698	2164	4.5%	13.3%	3.319	2.53	17466	45	9 12.8%	14.5%	1.891	0.80	4166
25	0.048	0.034	7.7%	80%	6.3	53.8	29804	9.00	848	1.2	1297	2829	11.8%	27.9%	3.475	3.47	11142	283	9 39.6%	39.7%	2,105	2.11	-7810
26	0.018	0.105	4.9%	65%	6.3	0.0	19635	9.00	483	1.2	2060	1/59	12.6%	14.3%	2.254	2.13	96/2	52	5 20.4%	20.2%	2.155	0.98	3971
2/	0.073	0.055	4.8%	46%	6.3	35.0	12979	9.04	364	1.2	2164	1464	17.8%	41.5%	1,516	1.52	3425	62	7 13.8%	16.3%	1.042	1.04	-353
28	0.017	0.008	3.1%	56%	6.3	61.2	37904	9.00	573	1.2	1/17	3419	5.0%	26 5%	4.120	4.12	11915	50	1 7.0%	10.3%	2.049	2.04	1297
29	0.031	0.015	4.0%	70%	6.3	53.8	27910	9.00	662	0.8	1641	2413	5 1%	25.5%	2,626	2.30	13422	50	5 11 5%	12 5%	2 112	0.61	6279
31	0.021	0.012	3.4%	73%	6.3	57.5	36846	9.69	932	1.2	2474	3084	6.2%	21.4%	3.866	3.87	15216	102	2 16.1%	18.5%	2,375	2.22	1144
32	0.032	0.017	4.7%	56%	6.3	50.0	28769	9.31	1038	1.2	1699	2574	8.1%	22.7%	3.414	3.35	12459	62	6 10.0%	14.4%	1.624	1.39	754
33	0.023	0.051	4.4%	55%	6.3	7.0	18758	9.00	581	1.2	2280	1700	9.7%	14.7%	2.247	2.07	9393	27	8 10.7%	10.5%	2.278	0.48	6507
34	0.039	0.023	4.4%	70%	6.3	46.3	20744	9.00	640	1	2176	1703	8.8%	26.9%	2.431	2.15	9480	70	5 19.3%	19.6%	1.989	1.53	1315
35	0.003	0.049	3.6%	87%	6.3	0.0	26782	8.85	922	1.2	2158	2150	1.8%	2.5%	3.324	2.40	16174	74	1 23.6%	23.6%	2.085	1.63	1437
36	0.054	0.040	3.2%	50%	6,3	38.8	21229	8.97	665	1	2618	1806	13.0%	27.8%	2.52	2.33	9718	57	6 11.8%	17.6%	0.856	1.05	-1261
37	0.008	0.072	3.0%	61%	6.3	0.0	23628	9.09	753	0.8	2483	1986	3.3%	4.2%	2.61	1.80	16355	13	1 4.9%	5.1%	1.252	0.18	6241
38	0.023	0.037	3.3%	56%	6.3	38.8	31476	8.85	813	1.2	2496	2821	7.5%	19.6%	3.655	3.56	13714	60	9 8.9%	14.4%	1.049	1.15	-524
39	0.016	0.061	2.5%	54% 20%	6.3	0.0	21049	9.00	A12	1.2	2/68	2122	8.4%	31 2%	2.41	2.23	10939	23	1 9.3%	9.3%	2.246	0.37	/566
L40	0.032	0.038	L.1 %	63%	6.0	320	25762	9.00 Q 16	717	1.0	1060	2257	8.2%	20.6%	2,860	2.09	12268		1 14 40	16.49	1 012	1.20	
	0.031	0.031	4.476	0378	0.3	52.9	20/03	3.10		1.0	1500	2207	0.278	LU,U /0	£.009	6	%change	23 4	63 7%	44.2%	1.013	1.05	200/
																		1		1			

· · . . .

	Retrofit	s: Du	uct@25 Sha	de l	Rduct		Sizing	dEER	Qahpt	Chg Fi	x		Progra	am De	sign C	with	Resizing						
			Same No		4		1.42	0	400	All					- 								
				Pos	st-Re	etrofit	Site I	Data					Res	ults - F	Post R	etrofil				Sav	ings		
			Ducts				A	ir Cor	ndition	er	Shell		Energ	у	Pea	ak Der	nand		Energ	У	Pe	ak Dem	and
	Leakage-	Oper	Leakage @	50	Cond	uction	Rat	ings	AirFlow	Charge	Leakage	Usa	ge & Duc	t Loss	kW @5	PM	2.90	Usa	je & Du	ct Loss	kW @	5PM	0.28
Site ID	slf2 rl	f2	Dikpct2 Dikr	ed%	UAr2	UAs2	Capr2	EERr2	Qah2	Cha2	Q50S2	Use2	Leaks2	Total2	kW2	DikW2	CapaPk2	kWh	Leaks	Total	kW	DikW	CapaPk
1	0.130 0	0.076	17.7%	0%	12.5	64.5	34298	9.00	1143	1	2400	3106	28.9%	43.0%	4.187	4.19	11343	-111	0.3%	-3.3%	1.523	0.02	5719
2	0.073 0).106	18.3%	0%	12.5	73.5	30022	9.43	1001	1	1825	2462	22.4%	40.1%	3.542	3.54	10935	434	3.2%	-0.5%	1.469	-0.75	8794
3	0.059 0),112	11.8%	0%	12.5	15.5	17934	8.97	598	1	1950	1386	20.6%	29.5%	2.232	1.80	8534	1	3.2%	-0.7%	1.581	-0.01	6150
4	0.062 0	0.039	10.9%	0%	12.5	85.0	24082	9.09	803		1950	2014	14.7%	41.0%	2.874	2.87	8002	298	3.3%	-2.0%	1.086	-0.59	6514
5	0.068 0	0.036	17.0%	0%	12.5	69.0	299//	8.90	999		1635	2413	15.4%	33.5%	3,646	3.28	12200	-1/4	0.2%	-6.0%	1.99	-0.42	9435
	0.002	027	1/.2%	0%	12.5	40.0	32243	0.90	1164		1440	2442	10.7%	27.0%	3.942	3.14	12622	-68	0.4%	-3.3%	1./53	-0.20	82/8
	0.078	052	16.5%	0%	12.5	90.0	34921	9.00	1142		1700	2023	20.5%	40.0%	4,102	4.02	11080	420	0.6%	-0.8%	0.475	-0.03	400
9	0.070 0	0.057	21.4%	0%	12.5	76.3	44708	8.76	1490	1	1950	3550	17.7%	30.9%	5 564	4 68	19704	502	0.0%	-1.2%	1 512	0.00	1889
10	0.137 0	0.139	7.4%	0%	12.5	77.5	30183	9.00	1006	1	2825	2976	34.6%	51.9%	3.774	3.77	7783	-163	-4.6%	-3.3%	-0.03	-0.03	1271
11	0.188 0).128	8.9%	0%	12.5	77.5	25792	9.00	860	1	2825	2984	41.3%	60.8%	3.214	3.21	4229	-120	-3.3%	-2.9%	0.075	0.08	1143
12	0.023 0	.121	6.4%	0%	12.5	0.0	28775	9.00	959	1	2400	1961	16.1%	18.1%	3.575	2.37	17116	382	1.6%	1.6%	0.531	-0.25	4882
13	0.150 0	0.111	16.2%	0%	12.5	70.0	24834	8.92	828	1	2400	2582	34.6%	54.0%	3.102	3.10	5698	-106	-1.9%	-2.9%	0.272	0.27	1452
14	0.070 0	0.067	16.1%	0%	12.5	77.5	27674	9.36	922	1	1125	2175	18.5%	39.3%	3.241	3.13	9950	488	5.5%	2.2%	0.892	-0.48	5062
15	0.043 0	0.020	10.1%	0%	12.5	63.0	19365	9.36	646	1	1000	1473	9.6%	35.5%	2.231	2.07	7365	89	2.4%	-7.5%	1.746	-0.59	10972
16	0.162).173	12.9%	0%	12.5	0.0	24548	9.40	818	1	2300	2200	40.2%	42.4%	2.977	2.98	90 98	167	-4.9%	-5.2%	0.841	0.27	2282
17	0.098 0	0.043	6.8%	0%	12.5	85.0	27797	9.40	927	1	2300	2344	21.1%	43.7%	3.212	3.21	8626	432	-1.6%	0.7%	0.277	-0.41	3396
	0.051 0).117	8.4%	0%	12.5	0.0	24602	9.40	820	1	2350	1688	19.8%	22.2%	2.926	2.08	13627	283	0.8%	0.4%	1.247	0.42	2572
	0.080 0	0.036	6.3%	0%	12.5	85.0	27859	9.40	929	1	2350	2233	17.4%	40.3%	3.21	3.21	9477	418	1.8%	0.5%	0.593	-0.56	4442
20	0.108 0	0.069	10.1%	0%	12.5	107.5	54402	9.69	1/92	1	2500	4030	24.8%	34.2%	6.074	5.42	22338	483	-4.2%	-1.4%	-0.19	0.46	-313/
21	0.138 0	0.053	14 0%	0%	12.5	53.8	44358	9.27	1470		2000	3388	26.0%	40,3%	0.393	0.39	17224	295	-4.0%	-0.2%	-0.42	-0.42	-3125
23	0.125 0	0.052	13.9%	0%	12.5	92.5	36677	9.31	1223		1725	3426	31.4%	49.5%	4 287	4 29	9572	466	-3.0%	-2.0%	0.905	0.45	-013
24	0.058 0	085	14.2%	0%	12.5	57.5	37272	9.43	1242	1	1900	2704	18.3%	30.3%	4.36	3.54	16999	-82	-1.0%	-2.6%	0.851	-0.22	4634
25	0.240 0	0.171	29.6%	0%	12.5	107.5	37095	9.00	1236	1	1700	4890	51.0%	68.0%	4.686	4.69	3715	777	0.4%	-0.3%	0.895	0.89	-383
26	0.052 0	.302	13.0%	0%	12.5	0.0	24438	9.00	815	1	2250	2036	35.1%	37.0%	3.221	2.76	11247	247	-2.1%	-2.5%	1,188	0.35	2395
27	0.135 0	.102	8.4%	0%	12.5	70.0	16155	9.04	538	1	2250	1850	31.5%	60.5%	1.991	1.99	2522	241	0.1%	-2.6%	0.566	0.57	551
28	0.073 0	.035	12.2%	0%	12.5	130.0	47177	9.00	1573	1	2050	3734	16.1%	36.4%	5.661	5.22	17801	590	-2.0%	0.4%	0.512	0.95	-1375
29	0,069 0	.042	9.9%	0%	12.5	122.5	41332	9.00	1378	1	1500	3334	16.2%	37.9%	4.977	4.74	15083	435	-3.1%	-1.6%	1.011	0.49	1376
30	0.070 0	.049	12.6%	0%	12.5	107.5	34738	9.90	1158	1	1800	2606	17.0%	39.6%	3.815	3.79	12176	392	-0.4%	-1.6%	0.924	-0.88	7523
31	0.111 0	0.044	11.5%	0%	12.5	115.0	45860	9.69	1529	1	2700	3635	23.4%	41.6%	5.132	5.13	15232	480	-1.0%	-1.7%	1.11	0.95	1129
32	0.072 0	0.038	10.0%	0%	12.5	100.0	35807	9.31	1194	1	1800	2764	16.3%	37.2%	4.163	3.90	13295	436	1.8%	-0.1%	0.875	0.85	-81
33	0.051 0	.112	9.2%	0%	12.5	14.0	23347	9.00	778	1	2400	1716	19.4%	25.9%	2.893	2.17	11965	262	1.1%	-0.7%	1.631	0.38	3935
34	0.130 0	.076	13.3%	0%	12.5	92.5	25819	9.00	861	1	2400	2662	28.9%	53.6%	3.156	3.16	5742	-254	-0.8%	•7.0%	1.264	0.52	5053
35	0.022 0	0.393	22.9%	0%	12.5	0.0	33333	8.85			2/00	2295	18.7%	19.4%	4.407	2.79	20724	596	6.8%	6.7%	1.002	1.24	-3113
36	0.10/ 0	100	6.1%	0%	12.5	//.5	26422	8.97	881	1	2700	2420	25.5%	40.0%	3.243	3.24	//50	-38	-0.7%	-1.2%	0.132	0.13	/0/
3/	0.021 0	180	7 10/	0%	12.0	0.0	29408	9.09	1206		2000	2014	17 20/	22 00/	3.010	2.15	19460	524	0.6%	0.9%	0.240	-0.1/	313/
20	0.031 0	132	5.3%	0%	12.5	-11.5	26108	9,00	872		2850	1840	18.8%	20 9%	3.27	2.00	14064	255	-0.876	2.0%	1 386	0.03	-3958
40	0.045 0	.053	3.7%	0%	12.5	85.0	25958	9.00	865		2850	2074	13.1%	37.6%	3.145	2.95	9611	374	-1.5%	0.5%	0.382	-0.58	3816
L	0.090.0	093	12.4%	0%	12.5	65.8	32066	9 16	1069	10	2132	2667	22.9%	38.3%	3 852	3.50	12102	281	-0.2%	-1.3%	0.829	0.13	2803
	0.000 0		1	575			02000		1003					55.576	0.002	0.001	16106		0.270	- 1.0 /0/	3.020	0.15	2000

%change 9.5% -1.0% -3.4%

E-15

94.114

	Retrof	its: Du	uct@25	Shade	Rduct		Sizing	dEER	Qahpt	Chg Fi	<		Progro	im De	sign D) with I	Resizing						
			75	No	4		1.16	ō	400	All							(1)		0				و بر بد محمد محمد ا
				Po	st-Re	etrofit	Site	Data					Res	<u>ults - F</u>	Post R	letrofil				<u>Sav</u>	ings		
			Duc	ts			4	vir Cor	dition	er	Shell		Energ	Y	Pea	<u>ak Der</u>	nand		Energ	У	Pea	ak Dem	and
	Leakage	- Oper	Leakag	e @50	Cond	uction	Ra	tings	AirFlow	Charge	Leakage	Usa	ge & Duc	t Loss	kW @5	PM	2.31	Us	age & Du	Loss	kW @:	PM	0.87
Site ID	sit2	rlf2	Dikpct2	Dikred%	UAr2	UAs2	Capr2	EERr2	Qah2	Cha2	Q50S2	Use2	Leaks2	Total2	kW2	DikW2	CapaPk2	kWh	Leaks	Total	kW	DikW	CapaPk
<u> </u>	0.024	0.014	3.8%	71%	12.5	04.0 72.5	2/931	9.00	931	1	2000	2310	5.8%	24.7%	3.329	2.88	13460	60	7 10 6%	15.0%	2.381	1.32	3602
- 3	0.021	0.037	4.3%	66%	12.5	15.5	14604	8.43	487		1797	1187	7.3%	19.2%	1 771	1.43	8030	10	16.0%	9.0%	2.200	0.02	6655
4	0.025	0.016	4.7%	60%	12.5	85.0	19611	9.09	654	1	1823	1882	6.1%	39.0%	2.321	2.32	6686	43	1 12.0%	0.0%	1.638	-0.04	7830
5	0.022	0.011	5.8%	68%	12.5	69.0	24411	8.90	814	1	1454	2162	5.0%	27.9%	2.943	2.82	10973	7	8 10.7%	-0.3%	2.694	0.04	10662
6	0.018	0.014	5.7%	71%	12.5	46.0	26257	8.90	875	1	1360	2166	4.7%	20.0%	3.168	2.64	13900	18	8 11.4%	4.4%	2.526	0.29	9566
	0.025	0.009	5.3%	68%	12.5	100.0	28438	9.00	948	1	1296	2550	5.3%	32.4%	3.383	3.38	11458	84	1 12.6%	7.0%	1.278	0.00	5256
8	0.031	0.018	6.4%	75%	12.5	90.0	2/911	8.91	930	1	1510	2034	1.3%	32.2%	3.367	3.37	11418		2 13.9%	8.0%	1.745	1.62	901
10	0.018	0.014	3.8%	51%	12.5	77.5	24579	9.00	819	1	2717	2456	18.0%	41 1%	2 996	3.00	8352	35	8 12.0%	7.5%	0 748	0.75	702
11	0.083	0.057	4.1%	56%	12.5	77.5	21004	9.00	700	1	2685	2266	19.7%	46.4%	2.552	2.55	5957	59	8 18.3%	11.5%	0.738	0.74	-586
12	0.013	0.065	3.5%	46%	12.5	0.0	23433	9.00	781	1	2329	1819	9.0%	11.5%	2.853	2.13	14950	52	3 8.7%	8.2%	1.252	-0.01	7048
13	0.034	0.025	4.2%	77%	12.5	70.0	20223	8.92	674	1	2100	1822	8.6%	35.5%	2.448	2.45	7672	65	4 24.0%	15.6%	0.927	0.93	-523
14	0.028	0.027	7.2%	60%	12.5	77.5	22536	9.36	751	1	1016	1983	7.7%	34.3%	2.601	2.60	8828	68	0 16.3%	7.2%	1.533	0.05	6184
15	0.033	0.016	8.0%	22%	12.5	63,0	15770	9.36	526	1	977	1510	10.7%	38.8%	1.817	1.82	5425	5	2 4.5%	-10.8%	2.161	-0.34	12912
17	0.038	0.041	3.3%	50%	12.5	85.0	22637	9.40	755	1	2074	2131	10.7%	39.2%	2.312	2.60	7748	6/	4 8 7%	23.3%	0.893	0.21	-/02
18	0.016	0.038	2.9%	67%	12.5	0.0	20035	9.40	668	1	2216	1457	6.9%	9.9%	2.315	1.68	12885	51	4 13.8%	12.6%	1.858	0.82	3314
19	0.039	0.017	3.2%	52%	12.5	85.0	22687	9.40	756	1	2274	2079	8.6%	37.2%	2.598	2.60	8172	57	1 10.6%	3.6%	1.206	0.05	5747
20	0.025	0.016	4.0%	77%	12.5	65.0	43791	9.69	1460	1	1619	3258	6.1%	18.6%	4.846	3.94	23810	125	6 14.5%	14.2%	1.034	1.94	-4609
21	0.039	0.014	3.3%	75%	12.5	107.5	44303	9.27	1477	1	2272	3608	8.4%	27.3%	5.12	4.66	20260	184	9 19.3%	18.8%	0.853	1.31	-7357
22	0.032	0.013	4.2%	75%	12.5	53.8	36123	9.87	1204	1	1688	2665	7.0%	19.7%	3.924	3.24	19217	110	8 16.9%	14.0%	1.935	1.86	-319
23	0.053	0.018	3.0%	75%	12.5	92.5	29868	9.31	996		1508	2070	11.2%	34.9%	3.446	3.45	114//	122	2 17.6%	14.1%	1.088	1.09	-2818
25	0.013	0.021	7.7%	80%	12.5	107.5	30208	9.00	1012		1297	2841	11.8%	38.1%	3.63	3.63	10797	282	7 39.6%	29.6%	1.95	1.95	-7465
26	0.018	0.105	4.9%	65%	12.5	0.0	19901	9.00	663	1	2060	1579	13.8%	16.6%	2,462	1.87	12013	70	5 19.2%	17.9%	1.946	1.24	1629
27	0.073	0.055	4.8%	46%	12.5	70.0	13155	9.04	439	1	2164	1593	17.9%	55.3%	1.597	1.60	2502	49	8 13.7%	2.6%	0.961	0.96	571
28	0.017	0.008	3.1%	77%	12.5	130.0	38418	9.00	1281	1	1858	3328	3.8%	29.7%	4.563	4.43	16465	99	6 10.3%	7.1%	1.611	1.73	-38
29	0.031	0.019	4.6%	56%	12.5	122.5	33659	9.00	1122	1	1417	3126	7.4%	34.6%	4.018	4.02	12964	64	3 5.8%	1.6%	1.971	1.21	3496
30	0.021	0.015	4.1%	70%	12.5	107.5	28289	9.90	943	1	1641	2349	5.2%	34.1%	3.067	3.07	10991	64	9 11.3%	3.9%	1.673	-0.16	8709
31	0.030	0.012	3.4%	73%	12.5	115.0	37346	9.69	1245	1	2474	3013	6.6%	30.2%	4.128	4.01	15918	110	3 15.8%	9.7%	2.114	2.07	442
32	0.032	0.017	4.1%	55%	12.5	100.0	29159	9.31	972		2280	1524	7.3%	33.5%	3.363	3.36	1153/	02	9 10.8%	3.5%	1.0/5	1.38	1677
34	0.023	0.023	4.4%	70%	12.5	92.5	21026	9.00	701	1	2176	2087	9.1%	41.8%	2.505	2.52	6648	32	1 19.0%	4.8%	1,901	1.16	4147
35	0.003	0.049	3.6%	87%	12.5	0.0	27145	8.85	905	1	2158	1869	1.6%	2.8%	3.312	2.05	18907	102	2 23.8%	23.3%	2.098	1.98	-1297
36	0.054	0.040	3.2%	50%	12.5	77.5	21516	8.97	717	1	2618	2143	13.4%	40.4%	2.604	2.60	7259	23	9 11.5%	5.0%	0.772	0.77	1198
37	0.008	0.072	3.0%	61%	12.5	0.0	23948	9.09	798	1	2483	1713	3.0%	4.3%	2.863	1.97	16406	40	4 5.2%	5.0%	0.999	0.01	6191
38	0.023	0.037	3.3%	56%	12.5	77.5	31903	8.85	1063	1	2496	2701	7.9%	27.0%	3.903	3.49	14928	73	0 8.5%	7.0%	0.801	1.21	-1739
39	0.016	0.061	2.5%	54%	12.5	0.0	21335	9.00	711		2768	1658	9.0%	11.8%	2.595	1.94	13522	43	7 8.6%	7.5%	2.061	0.66	4983
40	0.032	0.038	2.1%	29%	12.0	65.0	21138	9.00	705		1060	2000	9.4%	39.4%	2.049	2.50	11000	30	5 14 201	-1.4%	1.600	-0.18	0146
	0.031	0.031	4.4%	03%	12.5	05.8	20113	9.10	870	1.0	1 1900	2243	0.4%	20.4%	3.073	2./9	11920	122.00	14.3%	0.1%	1.008	0.03	2900

	Retrofits:	Duct@25	Shade	Bduct		Sizina	dEED	Oghot	Cha Fi	Y		Progra	n De	sian F	with I	Resizina						
	Tietronitor	75	No	8		0.99	0	400	All	<u>`</u>		nogic		olgi i E	••••••	(our la						
			Po	st-Re	etrofil	Site	Data					Res	ults - F	Post R	etrofi				Sav	rinas		
		Du	cts			A	ir Cor	dition	er	Shell	•	Energ	v	Pea	ak Den	nand		Enera	v	Pe	ak Dem	and
	Leakage- Ope	r Leaka	00 @50	Cond	uction	Rat	tinas	AirFlow	Charge	Leakage	Usa	ae & Duc	tLoss	kW @5	PM	2.00	Usa	ae & Duo	t Loss	kW @	PM	1.18
Site ID	sif2 rif2	Dikpct2	Dikred%	UAr2	UAs2	Capr2	EERr2	Qah2	Cha2	Q50S2	Use2	Leaks2	Total2	kW2	DikW2	CapaPk2	kWh	Leaks	Total	kW	DikW	CapaPk
1	0.024 0.01	4 3.8%	81%	6.3	32.3	23955	9.00	799	1	2055	2094	5.7%	17.1%	2.849	2.49	13350	901	23.5%	22.6%	2.861	1.72	3712
2	0.021 0.03	1 6.2%	71%	6.3	36.8	20968	9.43	699	1	1589	1842	7.0%	21.2%	2.4	2.27	10969	1053	18.6%	18.4%	2.611	0.52	8761
3	0.020 0.03	7 4.3%	66%	6.3	7.8	12525	8.97	418	1	1797	1116	7.3%	14.4%	1.513	1.31	7473	270	16.4%	14.5%	2.301	0.48	7212
4	0.025 0.01	6 4.7%	60%	6.3	42.5	16820	9.09	561	1	1823	1570	6.1%	26.1%	1.985	1.99	7871	742	12.0%	12.9%	1.975	0.30	6645
5	0.022 0.01	1 5.8%	68%	6.3	34.5	20937	8.90	698	1	1454	1920	5.0%	18.7%	2.518	2.34	11295	319	10.7%	8.8%	3.119	0.52	10340
6	0.018 0.01	4 5.7%	71%	6.3	23.0	22520	8.90	751	1	1360	2004	4.7%	13.8%	2.711	2.37	13294	351	11.4%	10.6%	2.983	0.57	10172
7	0.025 0.00	9 5.3%	68%	6.3	50.0	24390	9.00	813	1	1296	2208	5.3%	21.7%	2.895	2.76	12407	1183	12.6%	17.7%	1.766	0.62	4307
8	0.031 0.01	8 6.3%	66%	6.3	45.0	23938	8.91	798	1	1516	2216	7.3%	22.3%	2.881	2.77	12142	1120	13.9%	16.9%	2.231	2.21	238
9	0.018 0.01	4 6.4%	/5%	6.3	38.1	31226	8.76	1041	1	163/	2809	4.6%	14.8%	3,816	3.32	18087	1243	13.2%	14.9%	3.20	2.11	3500
10	0.067 0.06	3.8%	50%	6.3	38.8	21081	9.00	703		2/1/	2135	18.0%	31,9%	2,004	2.56	9120	0/9	12.0%	10.7%	1.18	1.10	1650
	0.083 0.05	4.1% 5 3.5%	A6%	6.3	38.8	20097	9.00	670		2000	1797	9.7%	30.9%	2.103	2.10	12004	556	8 7%	0.2%	1.107	0.02	-1032
12	0.013 0.08	5 4 2%	77%	6.3	35.0	17345	9.00	578		2325	1570	8.6%	24 9%	2.442	1 05	8415	906	24 1%	26.2%	1 281	1.42	-1265
14	0.028 0.02	7 7 2%	60%	63	38.8	19329	9.36	644		1016	1716	7.7%	23.8%	2 225	2 18	9591	947	16.3%	17.8%	1 909	0.47	5420
15	0.033 0.01	5 8 0%	22%	6.3	31.5	13525	9.36	451	1	977	1272	7.5%	26.5%	1.552	1.55	6292	291	4.5%	1.4%	2.425	-0.07	12045
16	0.038 0.04	1 3.3%	77%	6.3	0.0	17145	9,40	572	1	2074	1460	10.7%	12.5%	1.978	1.69	10599	907	24.6%	24.7%	1.841	1.55	781
17	0.049 0.02	2 3.5%	50%	6.3	42.5	19415	9,40	647	1	2223	1814	10.8%	28.0%	2.221	2.22	8800	962	8.7%	16.3%	1.268	0.58	3222
18	0.016 0.03	3 2.9%	67%	6.3	0.0	17183	9.40	573	1	2216	1430	6.9%	8.7%	1.98	1.65	11235	541	13.8%	13.8%	2,193	0.85	4964
19	0.039 0.01	7 3.2%	52%	6.3	42.5	19457	9.40	649	1	2274	1773	8.6%	25.9%	2.222	2.22	9181	877	10.6%	14.9%	1.581	0.43	4738
20	0.025 0.01	6 4.0%	77%	6.3	32.5	37558	9.69	1252	1	1619	3051	6.1%	13.5%	4.15	3.61	22302	1462	14.5%	19.3%	1.729	2.27	-3101
21	0.039 0.01	4 3.3%	75%	6.3	53.8	37997	9.27	1267	1	2272	3260	8.3%	19.6%	4.386	4.00	20238	2196	19.3%	26.5%	1.588	1.98	-7334
22	0.032 0.01	3 4.2%	75%	6.3	26.9	30981	9.87	1033	1	1688	2491	7.0%	14.5%	3.36	2.95	18065	1282	16.9%	19.2%	2.499	2.14	832
23	0.053 0.01	8 5.3%	65%	6.3	46.3	25616	9.31	854	1	1568	2337	11.2%	25.5%	2.95	2.95	12238	1556	17.6%	23.5%	1.584	1.58	-3579
24	0.015 0.02	1 3.9%	75%	6.3	28.8	26032	9.43	868	1	1698	2173	4.8%	14.3%	2.965	2.58	15298	449	12.5%	13.4%	2.245	0.75	6334
25	0.048 0.03	4 7.7%	80%	6.3	53.8	25908	9.00	864	1	1297	2442	11.8%	27.7%	3.107	3.11	11948	3225	39.6%	40.0%	2.473	2.47	-8616
26	0.018 0.10	5 4.9%	65%	6.3	0.0	17068	9.00	569	1	2060	1548	13.8%	15.5%	2.107	1.83	10481	736	19.2%	19.1%	2.302	1.28	3162
27	0.073 0.05	5 4.8%	46%	6.3	35.0	11283	9.04	376	1	2164	1273	18.0%	41.1%	1.364	1.36	3786	818	13.6%	16.7%	1.194	1.19	-714
28	0.017 0.00	3 3.1%	77%	6.3	65.0	32950	9.00	1098	1	1858	2909	3.8%	19.4%	3.907	3.58	17461	1415	10.3%	17.3%	2.266	2.59	-1034
29	0.031 0.01	9 4.6%	56%	6.3	61.3	28868	9.00	962	!	1417	2694	7.3%	23.8%	3.44	3.44	14202	1075	5.8%	12.4%	2.549	1.79	2258
30	0.021 0.01	5 4.1%	70%	6.3	53.8	24262	9.90	809		1641	2013	5.2%	22.7%	2.625	2.54	12153	985	11.3%	15.3%	2.115	0.37	/546
31	0.030 0.01	2 3.4%	/3%	6.3	57.5	32030	9.69	1068		24/4	2657	0.0%	20.8%	3.535	3.29	16636	1459	15.8%	19.1%	2.707	2.80	-2/6
32	0.032 0.01	4.1%	50%	6.3	50.0	25009	9.31	834		1099	2231	1.3%	23.1%	2.879	2.83	12460	909	10.6%	13.9%	2.159	1.92	749
33	0.023 0.05	4.4%	55%	0.3	7.0	10306	9.00	544		2280	1404	9.3%	14.3%	1.972	1./4	9830	514	10.0%	17.5%	2.003	0.62	2013
34	0.039 0.02	3 4.4%	070/	0.3	40.3	10033	9.00	776		21/0	1953	9.170	29.0%	2,100	2.13	16339	1029	22.0%	22.8%	2.200	2.00	1272
- 30	0.054 0.04	3.0%	50%	6.3	29.9	19454	8.07	615		2618	1832	13 4%	20.7%	2.000	2.03	8103	550	11 5%	15.6%	1 148	1 15	264
37	0.008 0.07	3.270	61%	6.3	0.0	20530	9.09	685		2493	1696	3.0%	3.8%	2 452	1 95	14191	421	5.2%	5.5%	1 41	0.03	8406
20	0.023 0.03	7 2 20/	56%	6.0	38.8	27362	8.05	Q12	1	2406	2440	7 0%	19.3%	3 342	2 00	14004	990	8.5%	14 7%	1,363	1 71	-1714
20	0.016 0.06	1 2.5%	54%	6.3	00.0	18208	9.00	610	1	2769	1627	9.0%	10.7%	2 22	190	11779	468	8.6%	8.7%	2,436	0 69	6726
40	0.032 0.03	3 2.7%	29%	6.3	42.5	18130	9.00	604	1	2819	1764	9.4%	27.6%	2.18	2.18	8375	684	2.2%	10.4%	1.347	0.19	5052
L	0.031 0.03	1 4 4%	63%	6.3	32.0	22396	9.16	747	1.0	1960	2003	8.4%	20,4%	2.63	2.43	11976	944	14.3%	16.6%	2.052	1.20	2929
		1 4.470	0070	0.0	02.0		0.10					0,,,0				%chanae	32.0%	63.1%	44.8%			
															L					4 · · ·		

E-17

94.114

	Retrof	its: Du	uct@25	Shade	Rduct		Sizing	dEER	Qahpt	Chg Fi	×	1	Progra	am De	sign F	with I	Resizing						
			Same	No	4		1.42	2	400	All		<u> </u>											
				Pos	st-Re	etrofit	Site	Data					Res	ults - F	Post R	etrofi	t			Sav	ings		
			Du	<u>cts</u>			<u> </u>	ir Con	dition	er	Shell		Energ	У	Pea	ak Dei	mand		Energ	у	Pea	<u>ik Dem</u>	and
	Leakage	- Oper	Leaka	ge @50	Cond	luction	Ra	ings	AirFlow	Charge	Leakage	Usa	ge & Duc	t Loss	kW @5	PM	2.38	Usi	ige & Duk	t Loss	kW @5	PM	0.80
Site ID	slf2	rlf2	Dlkpct2	Dikred%	UAr2	UAs2	Capr2	EERr2	Qah2	Cha2	Q50S2	Use2	Leaks2	Total2	kW2	DikW2	CapaPk2	kWh	Leaks	Total	kW	DikW	CapaPk
1	0.130	0.076	17.7%	0%	12.5	64.5	34298	11.00	1143	1	2400	2541	28.9%	43.0%	3.426	3.43	11343	454	0.3%	-3.3%	2.284	0.78	5719
2	0.073	0.106	18.3%	0%	12.5	/3.5	30022	11.43	1001	1	1825	2031	22.4%	40.1%	2.922	2.92	10935	86	3.2%	-0.5%	2.089	-0.13	8794
3	0.059	0.112	10.0%	0%	12.5	10.0	24082	11.00	598		1950	1133	20.0%	29.5%	1.820	1.48	8002	25	3.2%	-0.7%	1.988	0.32	6514
	0.002	0.036	16.3%	0%	12.5	69.0	29977	10.90	999	1	1635	1970	15.4%	33.5%	2.330	2.00	12200	260	0.2%	-6.0%	2.66	0.07	9435
6	0.062	0.049	17.2%	0%	12.5	46.0	32243	10.90	1075	1	1550	1994	15.7%	27.6%	3,218	2.56	15188	36	0.4%	-3.3%	2.476	0.10	8278
7	0.078	0.027	14.8%	0%	12.5	100.0	34921	11.00	1164	1	1440	2310	16.3%	37.8%	3.421	3.29	12633	108	1.7%	1.6%	1.24	0.10	4081
8	0.090	0.052	16.5%	0%	12.5	90.0	34274	10.91	1142	1	1700	2374	20.5%	40.0%	3.42	3.42	11980	96	0.6%	-0.8%	1.692	1.57	399
9	0.070	0.057	21.4%	0%	12.5	76.3	44708	10.76	1490	1	1950	2890	17.7%	30.9%	4.53	3.81	19704	116	0.1%	-1.2%	2.547	1.62	1889
10	0.137	0.139	7.4%	0%	12.5	77.5	30182	11.00	1006	1	2825	2435	34.6%	51.9%	3.088	3.09	7783	378	-4.6%	-3.3%	0.656	0.66	1271
11	0.188	0.128	8.9%	0%	12.5	77.5	25792	11.00	860	1	2825	2442	41.3%	60.8%	2.63	2.63	4229	42	-3.3%	-2.9%	0.66	0.66	1143
12	0.023	0.121	6.4%	0%	12.5	0.0	28775	11.00	959	1	2400	1604	16.1%	18.1%	2.925	1.94	17116	730	1.6%	1.6%	1.181	0.18	4882
13	0.150	0.111	16.2%	0%	12.5	70.0	24834	10.92	828		2400	2109	34.6%	54.0%	2.534	2.53	5698	36	-1.9%	-2.9%	0.84	0.84	1452
14	0.070	0.007	10.1%	0%	12.5	63.0	10365	11.30	922	1	1125	1/92	%C.81	39.3%	1.07	2.58	7265	- 87	2.0%	2.270	1.403	0.07	10072
16	0.162	0.173	12.9%	0%	12.5	0.0	24548	11.40	818	1	2300	1814	40.2%	42 4%	2 455	2 45	9098	55	-4.9%	-5.2%	1 363	0.79	2282
17	0.098	0.043	6.8%	0%	12.5	85.0	27797	11.40	927	1	2300	1933	21.1%	43.7%	2.648	2.65	8625	84	-1.6%	0.7%	0.841	0.16	3396
18	0.051	0.117	8.4%	0%	12.5	0.0	24602	11.40	820	1	2350	1392	19.8%	22.2%	2.413	1.72	13627	57	0.8%	0.4%	1.761	0.78	2572
19	0.080	0.036	6.3%	0%	12.5	85.0	27859	11.40	929	1	2350	1841	17.4%	40.3%	2.647	2.65	9477	810	1.8%	0.5%	1.157	0.00	4442
20	0.108	0.069	15.1%	0%	12.5	65.0	53774	11.69	1792	1	1830	3341	24.8%	34.2%	5.035	4.49	22338	117:	-4.2%	-1.4%	0.845	1.39	-3137
21	0.158	0.056	12.1%	0%	12.5	107.5	54402	11.27	1813	1	2500	3987	32.2%	46.3%	5.258	5.26	16028	1469	-4.6%	-0.2%	0.715	0.72	-3125
22	0,128	0.053	14.9%	0%	12.5	53.8	44358	11.87	1479	1	1900	2817	26.9%	36.5%	4.069	3.89	17224	950	3 -3.0%	-2.8%	1.79	1.21	1673
23	0.155	0.052	13.9%	0%	12.5	92.5	36677	11.31	1223	1	1/25	2821	31.4%	49.5%	3.529	3.53	95/2	10/2	-2.6%	-0.5%	1.005	1.00	-913
- 24	0.058	0.085	14.2%	0%	12.5	57.5 107.5	37272	11.43	1242	1	1700	2231	51.0%	30.3% 69.0%	3.590	2.92	10999	39/	-1.0%	-2.0%	1.614	0.41	4634
26	0.052	0.302	13.0%	0%	12.5	0.0	24438	11.00	815	1	2250	1666	35 1%	37.0%	2 636	2.26	11247	61	.2 1%	-2.5%	1 773	0.85	2305
27	0.135	0.102	8.4%	0%	12.5	70.0	16155	11.04	538	1	2250	1515	31.5%	60.5%	1.63	1.63	2522	570	0.1%	-2.6%	0.927	0.93	551
28	0.073	0.035	12.2%	0%	12.5	130.0	47177	11.00	1573	1	2050	3055	16.1%	36.4%	4.632	4.27	17801	1269	-2.0%	0.4%	1.542	1.90	-1375
29	0.069	0.042	9.9%	0%	12.5	122.5	41332	11.00	1378	1	1500	2728	16.2%	37.9%	4.072	3.88	15083	104	-3.1%	-1.6%	1.916	1.35	1376
30	0.070	0.049	12.6%	0%	12.5	107.5	34738	11.90	1158	1	1800	2168	17.0%	39.6%	3.174	3.15	12176	830	-0.4%	-1.6%	1.565	-0.24	7523
31	0.111	0.044	11.5%	0%	12.5	115.0	45860	11.69	1529	1	2700	3013	23.4%	41.6%	4.254	4.25	15232	110	-1.0%	-1.7%	1.988	1.83	1129
32	0.072	0.038	10.0%	0%	12.5	100,0	35807	11.31	1194	1	1800	2275	16.3%	37.2%	3.427	3.21	13295	924	1.8%	-0.1%	1.611	1.54	-81
33	0.051	0.112	9.2%	0%	12.5	14.0	23347	11.00	778	1	2400	1404	19.4%	25.9%	2.367	1.78	11965	574	1.1%	-0.7%	2.157	0.78	3935
34	0.130	0.076	13.3%	0%	12.5	92.5	25819	11.00	861	1	2400	2178	28.9%	53.6%	2.582	2.58	5742	230	-0.8%	-7.0%	1.838	1.09	5053
35	0.022	0.393	22.9%	0%	12.5	0.0	33333	10.85	1111		2700	1872	18.7%	19.4%	3.595	2.28	20724	1019	6.8%	6.7%	1.815	1.76	-3113
30	0.107	0.079	7 29/	0%	12.5	11.5	20422	11.00	090	1	2700	1979	20.0%	40.0%	2.002	2,05	10460	40.		-1.2%	0.723	0.72	- /0/
3/	0.021	0.100	7.3%	0%	12.0	77 5	39176	10.85	1306		2000	2377	17 2%	32 0%	3 99	1.70	17149	105	-0.8%	2.9%	0.090	1.64	-3050
39	0.034	0.133	5.3%	0%	12.5	0.0	26198	11.00	873	1	2850	1506	18.8%	20.9%	2.676	1.84	14964	589	-1.1%	-1.6%	1.98	0.75	3540
40	0.045	0.053	3.7%	0%	12.5	85.0	25957	11.00	865	1	2850	1697	13.1%	37.6%	2.573	2.42	9611	75	-1.5%	0.5%	0.953	-0.05	3816
	0.090	0.093	12.4%	0%	12.5	65.8	32066	11.16	1069	1.0	2132	2189	22.9%	38.3%	3.162	2.87	12102	758	-0.2%	-1.3%	1.519	0.75	2803
			-					·				•				يتلأن استلفظت الباري	% change	25 7%	-1.0%	2 4%			

	Betrofi	its: D	uct@25_S	hade F	Rduct		Sizina	deer	Qabot	Cha Fi	Y		Progra	nm De	sian G	S with	Resizina	1					
			75 N	10	<u>я</u>		0.99	2	400		<u></u>		ingit		oigir c		1. Other 15	,					
				Pos	st-Re	atrofit	Site	Data		7 (1			Res	ulte - F	Post P	etrofi	+			Sav	ings		
			Duct		54 110			ir Cor	dition	or	Shell		Energ	v	De	ak De	mand		Energ	v	Pe	ak Den	nand
	Loskage		Loakago	.3 	Cond	luction	80	tinge	AirElaw	Charge	Loskage	Llea	CHOIN		LW OF		1.64	Liea	LINEIN		LW	IN DOM	1 64
Sito ID	elf2	rif2	Dikoct2 D	lkred%	11412	LIAs2	Canr2	FFBr2	Oah2	Cha2	OSOS2	11502	leaks2	Total2	kW2	DikW2	CanaPk2	kWh	leake	Total	kW		CanaPk
	0.024	0.014	3.8%	81%	63	32 3	23949	11.00	798	1	2055	1713	5.7%	17 1%	2 331	2 035	13346	1282	23.5%	22 6%	3 379	2 1687	3716
2	0.021	0.031	6.2%	71%	6.3	36.8	20963	11.43	699	1	1589	1519	7.0%	21.2%	1.979	1.872	10965	1376	18.6%	18.4%	3.032	0.9204	8764
3	0.020	0.037	4.3%	66%	6.3	7.8	12522	10.97	417	1	1797	913	7.3%	14.4%	1.237	1.075	7470	474	16.4%	14.5%	2.577	0.7163	7214
4	0.025	0.016	4.7%	60%	6.3	42.5	16815	11.09	561	1	1823	1287	6.1%	26.1%	1.627	1.627	7868	1025	12.0%	12.9%	2.333	0.658	6648
5	0.022	0.011	5.8%	68%	6.3	34.5	20931	10.90	698	1	1454	1568	5.0%	18.7%	2.055	1.911	11291	672	10.7%	8.8%	3.581	0.9487	10344
6	0.018	0.014	5.7%	71%	6.3	23.0	22514	10.90	750	1	1360	1636	4.7%	13.8%	2.213	1.932	13290	718	11.4%	10.6%	3.482	1.0052	10176
7	0.025	0.009	5.3%	68%	6.3	50.0	24383	11.00	813	1	1296	1807	5.3%	21.7%	2.368	2.261	12403	1585	12.6%	17.7%	2.293	1.1261	4311
8	0.031	0.018	6.3%	66%	6.3	45.0	23932	10.91	798	1	1516	1810	7.3%	22.3%	2.353	2.265	12138	1526	13.9%	16.9%	2.759	2.722	242
9	0.018	0.014	6.4%	75%	6.3	38.1	31217	10.76	1041	1	1637	2287	4.6%	14.8%	3.106	2.705	18082	1765	13.2%	14.9%	3.971	2.7275	3511
10	0.067	0.068	3.8%	51%	6.3	38.8	21075	11.00	702	1	2717	1747	18.0%	31.9%	2.097	2.097	9122	1067	12.0%	16.7%	1.647	1.6472	-69
11	0.083	0.057	4.1%	56%	6.3	38.8	18009	11.00	600	1	2685	1566	19.7%	35.9%	1.785	1.785	7021	1299	18.3%	22.1%	1.504	1.5044	-1649
12	0.013	0.065	3.5%	46%	6.3	0.0	20092	11.00	670	1	2329	1462	9.0%	10.5%	1.997	1.712	13000	880	8.7%	9.2%	2.108	0.4026	8998
13	0.034	0.025	4.2%	77%	<u>6.3</u>	35.0	17340	10.92	578	1	2100	1283	8.6%	24.9%	1.71	1.594	8412	1194	24.1%	26.2%	1.665	1.78	-1262
14	0.028	0.027	7.2%	60%	6.3	38.8	19323	11.36	644	1	1016	1414	7.7%	23.8%	1.833	1.796	9588	1249	16.3%	17.8%	2.301	0.8543	5424
15	0.033	0.016	8.0%	22%	6.3	31.5	13522	11.36	451	1	977	1048	7.5%	26.5%	1.279	1.279	6290	515	4.5%	1.4%	2.699	0.2015	12047
16	0.038	0.041	3.3%	1/%	6.3	0.0	1/141	11.40	5/1		2074	1204	10.7%	12.5%	1.63	1.395	10596	1163	24.6%	24.7%	2.188	1.8484	784
	0.049	0.022	3.5%	50%	6.3	42.5	19409	11.40	647		2223	1490	10.8%	28.0%	1.831	1.831	8/90	1280	8.7%	10.3%	1.658	0.975	3225
10	0.010	0.038	2.9%	500/	0.3	42.5	10452	11.40	5/3		2210	11/9	0.97	0./%	1.032	1.300	0177	1100	13.6%	13.8%	1.070	1.1396	4907
20	0.039	0.017	3.276 A 0%	779/	6.3	42.5	27548	11.40	1252		1610	2520	6 10/	12 50/	2 420	2.00	22205	1004	14 59	14.370	1.872	2 9909	2005
21	0.023	0.014	3 3%	75%	6.0	52.0	37086	11.03	1252		2272	2681	8 3%	10.7%	3,439	2.99	20232	2775	10.3%	26 5%	2 267	2.0050	-3095
22	0.003	0.013	4 2%	75%	63	26.9	30973	11.27	1032		1689	2071	7.0%	14 5%	2 703	2 457	18060	1702	16.0%	10.2%	3,066	2 6427	-7320
23	0.053	0.018	5.3%	65%	6.3	46.3	25610	11 31	854	1	1568	1924	11.2%	25.5%	2 428	2 428	12234	1969	17.6%	23.5%	2 106	2 1063	-3575
24	0.015	0.021	3.9%	75%	6.3	28.8	26025	11 43	868	1	1698	1793	4.8%	14.3%	2 446	2 125	15293	829	12.5%	13 4%	2 765	1 2041	6339
25	0.048	0.034	7.7%	80%	6.3	53.8	25901	11.00	863	1	1297	1998	11.8%	27.7%	2.542	2.542	11944	3669	39.6%	40.0%	3.039	3.0387	-8612
26	0.018	0,105	4.9%	65%	6.3	0.0	17064	11.00	569	1	2060	1266	13.8%	15.5%	1.723	1.5	10478	1017	19.2%	19.1%	2.686	1.61	3164
27	0.073	0.055	4.8%	46%	6.3	35.0	11280	11.04	376	1	2164	1042	18.0%	41.1%	1.116	1.116	3785	1049	13.6%	16.7%	1.441	1.4412	-712
28	0.017	0.008	3.1%	77%	6.3	65.0	32941	11.00	1098	1	1858	2380	3.8%	19.4%	3,196	2.93	17455	1943	10.3%	17.3%	2.978	3.2365	-1028
29	0.031	0.019	4.6%	56%	6.3	61.3	28860	11.00	962	1	1417	2204	7.3%	23.8%	2.814	2.814	14197	1565	5.8%	12.4%	3.175	2.4164	2263
30	0.021	0.015	4.1%	70%	6.3	53.8	24256	11.90	809	1	1641	1675	5.2%	22.7%	2.183	2.11	12149	1323	11.3%	15.3%	2.556	0.7962	7550
31	0.030	0.012	3.4%	73%	6.3	57.5	32022	11.69	1067	1	2474	2202	6.6%	20.8%	2.929	2.725	16631	1914	15.8%	19.1%	3.313	3.3601	-270
32	0.032	0.017	4.7%	56%	6.3	50.0	25002	11.31	833	1	1699	1837	7.3%	23.2%	2.369	2,327	12460	1363	10.8%	13.9%	2.669	2.4209	754
33	0.023	0.051	4.4%	55%	6.3	7.0	16302	11.00	543	1	2280	1198	9.3%	14.3%	1.613	1.421	9832	780	11.2%	10.9%	2.912	1.1343	6068
34	0.039	0.023	4.4%	70%	6.3	46.3	18028	11.00	601	1	2176	1418	9.1%	29.0%	1.763	1.763	7979	990	19.0%	17.5%	2.657	1.9141	2816
35	0.003	0.049	3.6%	87%	6.3	0.0	23275	10.85	776	1	2158	1511	1.6%	2.3%	2.313	1.656	16333	1379	23.9%	23.8%	3.097	2.3761	1277
36	0.054	0.040	3.2%	50%	6.3	38.8	18449	10.97	615	1	2618	1498	13.4%	29.7%	1.821	1.821	8190	884	11.5%	15.6%	1.555	1.5545	267
37	0.008	0.072	3.0%	61%	6.3	0.0	20534	11.09	684	1	2483	1390	3.0%	3.8%	2,009	1.596	14187	727	5.2%	5.5%	1.853	0.383	8409
38	0.023	0.037	3.3%	56%	6.3	38.8	27355	10.85	912	1	2496	1990	7.9%	19.3%	2.725	2.442	14899	1440	8.5%	14.7%	1.98	2.2628	-1710
39	0.016	0.061	2.5%	54%	6.3	0.0	18293	11.00	610		2/68	1332	9.0%	10.7%	1.816	1.558	11//6	1005	8.6%	8.7%	2.84	1.0381	6729
L40	0.032	0.038	2.1%	29%	0.3	42.5	10120	11.00	604	<u> </u>	2019	1443	9.4%	21.0%	1.783	1.783	03/2	1005	2.670	10.4%	1./44	0.5661	5055
	0.031	0.031	4.4%	63%	6.3	32.9	22390	11.16	/46	1.0	1960	1645	8.4%	20.4%	2,158	1,994	119/2	1303	14.3%	10.6%	2.523	1.0316	2933
																	1%CNONGO	44.2%	63.1%	44.8%			

F		\$	Same	Yes	A		4 10						_		-								
			12				1.48	0	Same	None													
				Po	st-Re	trofit	Site I	Data					Res	ults - F	<u>Post R</u>	etrofi	t			Sav	ings		
			Due	cts			<u>A</u>	ir Con	dition	er	Shell		Energ	Y	Pea	<u>ak Dei</u>	nand		Energ	У	_Pea	ak Den	nand
Lea	akage	- Oper	Leaka	ge @50	Cond	uction	Rat	ings	AirFlow	Charge	Leakage	Usag	ge & Duc	tLoss	kW @5	PM	2.79	Usag	e & Duc	t Loss	kW @5	PM	0.39
Site ID sit2	2	r112	Dikpct2	Dikred%	UAr2	UAs2	Capr2	EERr2	Qah2	Cha2	Q50S2	US02	Leaks2	Total2	KW2	DikW2	CapaPk2	kWh 050	Leaks	Total	KW	DIKW	CapaPk
	0.130	0.076	18 3%	0%	12.0	04.0 72.5	3384/	9.00	1001	0.8	1825	2757	29.3%	42.0%	4,405	2 704	11791	130	0.0%	-2.9%	1.300	-0.002	4980
3 0	0.059	0.112	11.8%	0%	12.5	15.5	18743	8.97	822	0.0	1950	1253	23.7%	31.3%	2.559	1.657	9322	133	0.0%	-2,4%	1.255	0.1348	5362
4 0	0.062	0.039	10.9%	0%	12.5	85.0	25170	9,09	978	0.8	1950	2239	18.0%	45.7%	2.936	2.337	9207	73	0.0%	-6.7%	1.024	-0.052	5309
5 0	0.068	0.036	16.2%	0%	12.5	69.0	31330	8,90	1080	1	1635	2103	15.7%	32.8%	3,845	2.822	13084	137	0.0%	-5.2%	1.792	0.0376	8551
60	0.062	0.049	17.2%	0%	12.5	46.0	33699	8.90	1181	1	1550	2139	16.0%	27.2%	4.176	2.731	16196	216	0.0%	-2.9%	1.518	0.2064	7270
7 0.	0.078	0.027	14.8%	0%	12.5	100.0	36498	9.00	1169	0.8	1440	3105	18.0%	42.4%	4.052	3.167	13599	286	0.0%	-3.0%	0.609	0.2202	3115
8 0	0.090	0.052	16.5%	0%	12.5	90.0	35822	8.91	1083	1.2	1700	3052	21.1%	42.3%	4.311	4.311	9466	284	0.0%	-3.1%	0.801	0.6763	2914
9 0	0.070	0.057	21.4%	0%	12.5	77.5	21545	8.76	751	1.2	1900	3074	20.0%	32.5%	2.000	2.091	8425	- 3//	0.0%	-2.6%	1.421	0.3421	54/9
11 0	0 188	0.133	8.9%	0%	12.5	77.5	26957	9.00	718		2825	2588	38.0%	58.9%	3 145	3 145	4917	276	-0.1%	-1.0%	0.105	0.1040	454
12 0	0.023	0.121	6.4%	0%	12.5	0.0	30074	9.00	856	0.8	2400	2056	17.7%	20.2%	3.339	1.861	17788	286	0.0%	-0.4%	0.766	0.2535	4210
13 0	0.150	0.111	16.2%	0%	12.5	70.0	25955	8.92	748	1	2400	2237	32.7%	52.6%	3.107	3.107	6207	240	0.0%	-1.5%	0.268	0.2676	942
14 0	0.070	0.067	16.1%	0%	12.5	77.5	28924	9.36	1232	0.8	1125	2457	24.0%	45.0%	3.419	2.512	11461	206	0.0%	-3.4%	0.715	0.138	3551
15 0	0.043	0.020	10.1%	0%	12.5	63.0	20240	9.36	826	0.8	1000	1594	12.0%	38.8%	2.307	1.597	8625	-32	0.0%	-10.8%	1.67	-0.117	9712
16 0	0.162	0.173	12.9%	0%	12.5	0.0	25657	9.40	532	1.2	2300	2062	35.2%	37.9%	2.738	2.738	8006	304	0.1%	-0.6%	1.08	0.5054	3374
1/ 0	0.098	0.043	6.8%	0%	12.5	85.0	29052	9.40	611	0.8	2300	2620	19.5%	49.4%	2.833	2./8	11496	106	0.0%	-5.0%	0.656	0.0254	3403
	0.001	0.036	6.3%	0%	12.5	85.0	20117	9.40	916	0.8	2350	2480	10.0%	45 3%	3.001	2.210	10198	170	0.0%	-0.776	0.707	0.201	9721
20 0	0.108	0.069	15.1%	0%	12.5	65.0	56202	9.69	1030	1.2	1830	4007	20.7%	33.4%	5.601	5.415	18047	506	0.0%	-0.6%	0.279	0.4646	1154
21 0	0.158	0.056	12.1%	0%	12.5	107.5	56859	9.27	1094	1.2	2500	4860	27.7%	46.2%	5.969	5,969	12889	597	-0.1%	-0.1%	0.004	0.0043	15
22 0	0.128	0.053	14.9%	0%	12.5	53.8	46361	9.87	971	1.2	1900	3394	23.8%	36.2%	4.645	4.645	14086	380	0.0%	-2.4%	1.214	0.4547	4812
23 0	0.155	0.052	13.9%	0%	12.5	92.5	38333	9.31	875	1.2	1725	3526	28.8%	50.8%	4.139	4.139	7364	367	0.0%	-1.8%	0.395	0.395	1295
_24_0	0.058	0.085	14.2%	0%	12.5	57.5	38955	9.43	1161	1	1900	2349	17.3%	29.5%	4,415	3.028	17633	273	0.0%	-1.8%	0.796	0.3014	3999
25 0	0.240	0.171	29.6%	0%	12.5	107.5	38770	9.00	1104	1.2	1700	5075	51.1%	70.1%	4.705	4.705	1841	592	0.2%	-2.5%	0.875	0.8753	1491
26 0	0.052	0.302	13.0%	0%	12.5	70.0	16004	9.00	628	1.2	2250	1984	32.4%	34.7%	3.040	2./0/	9270	300	0.0%	-0.1%	1.303	0.3433	43/2
28 0	0.135	0.102	12 2%	0%	12.5	130.0	49307	9.04	1021	1.2	2050	3949	14 1%	39.7%	5 389	5 389	13204	375	0.0%	-3.0%	0.000	0.3337	3223
29 0	0.069	0.042	9.9%	0%	12.5	122.5	43199	9.00	745	1.2	1500	3580	13.1%	42.4%	4.58	4.58	10604	189	0.0%	-6.1%	1.409	0.6504	5855
30 0	0.070	0.049	12.6%	0%	12.5	107.5	36306	9.90	862	0.8	1800	2904	16.5%	45.2%	3.444	2,98	12217	94	0.0%	-7.2%	1.295	-0.073	7482
31 0	0.111	0.044	11.5%	0%	12.5	115.0	47931	9.69	1213	1.2	2700	3791	22.3%	43.6%	5.073	5.073	11824	325	0.0%	-3.7%	1.169	1.0121	4537
32 0	0.072	0.038	10.0%	0%	12.5	100.0	37424	9.31	1350	1.2	1800	2897	18.1%	39.3%	4.491	4.435	11034	303	0.0%	-2.2%	0.547	0.3129	2180
33 0	0.051	0.112	9.2%	0%	12.5	14.0	24401	9.00	755	1.2	2400	1773	20.4%	27.5%	2.989	2,353	9980	204	0.0%	-2.3%	1.536	0.2024	5920
34 0	0.130	0.076	13.3%	0%	12.5	92.5	26985	9.00	833	1	2400	2331	28.1%	52.7%	3.227	3.227	6227		0.0%	-6.1%	1.192	0.4492	4567
35 0	0.022	0.393	22.9%	0%	12.5	0.0	34839	8.85	1199	1.2	2700	2450	22.9%	23.7%	4.712	3.248	16666	440	2.6%	2.5%	0.697	0.7845	944
36 0	0.107	0.0/9	0.1%	0%	12.5	//.5	2/015	8.97	020	1	2/00	1954	24.5%	45./%	3.329	3.238	20307	209	0.0%	-0.5%	0.046	0.1378	2200
3/ 0	0.021	0.100	7 1%	0%	12.0	77 6	40046	8.09	1059	1.0	2600	3016	0.2%	33 7%	4 816	4 211	13633	414	0.0%	0.1%	-0.11	0 4024	-442
39 0	0.034	0.133	5.3%	0%	12.5	0.0	27381	9.00	695	1.2	2850	1840	17.6%	20.1%	3,191	2.304	12503	255	0.0%	-0.7%	1.465	0.2922	6002
40 0	0.045	0.053	3.7%	0%	12.5	85.0	27130	9.00	538	0.8	2850	2351	11.6%	44.6%	2.735	2.393	9030	97	0.0%	-6.6%	0.792	-0.022	4398
- 10	0.090	0.093	12.4%	0%	12.5	65.8	33514	9.16	932	1.0	2132	2685	22.5%	39.9%	3.798	3.322	11119	262	0.1%	-2.9%	0.883	0.3038	3786

E-20

1

	Retrof	its: Di	uct@25	Shade	Rduct		Sizing	dEER	Qahpt	Chg Fi	x	1	Progra	am De	sign I [.]	with F	Resizing						
			75	Yes	8		0.88	2	400	All			-				_						
				Po	st-Re	etrofit	Site	Data					Res	ults - F	<u>Post R</u>	etrofi	t			Sav	ings		
	ļ		Duc	cts			A	<u>ir Cor</u>	dition	er	Shell		Energ	У	Pea	ak Dei	mand		Energ	У	Pea	ak Dem	and
	Leakage	- Oper	Leaka	ре @50	Cond	uction	Rat	tings	AirFlow	Charge	Leakage	Usa	ge & Duc	t Loss	kW @5	PM	1.46	Usa	ge & Duc	t Loss	kW @5	PM	1.72
Site ID	slf2	rif2	Dlkpct2	Dikred%	UAr2	UAs2	Capr2	EERr2	Qah2	Cha2	Q50S2	Use2	Leaks2	Total2	kW2	DikW2	CapaPk2	kWh	Leaks	Total	kW	DikW	CapaPk
	0.024	0.014	3.8%	81%	6.3	32.3	21380	11.00	- /13 - 624	1	2055	1513	5./%	18.4%	2.082	1.803	1163/	1482	23.5%	21.3%	3.628	2.4004	5424
	0.021	0.031	4.3%	66%	6.3	78	10/14	10.97	373	1	1707	802	7.0%	22.0%	1.700	0.046	6580	594	16.0%	10.7%	2 700	0.8458	8104
4	0.025	0.016	4.7%	60%	6.3	42.5	15012	11.09	500	1	1823	1155	6.1%	28.4%	1.453	1.453	6691	1157	12.0%	10.6%	2.507	0.8317	7825
5	0.022	0.011	5.8%	68%	6.3	34.5	18686	10.90	623	1	1454	1393	5.0%	20.3%	1.836	1.711	9790	847	10.7%	7.2%	3.801	1.1486	11845
6	0.018	0.014	5.7%	71%	6.3	23.0	20099	10.90	670	1	1360	1444	4.7%	14.8%	1.976	1.711	11655	910	11.4%	9.5%	3.718	1.2264	11811
7	0.025	0.009	5.3%	68%	6.3	50.0	21768	11.00	726	1	1296	1614	5.3%	23.6%	2.115	2.045	10673	1777	12.6%	15.8%	2.546	1.3414	6041
8	0.031	0.018	6.3%	66%	6.3	45.0	21365	10.91	712	1	1516	1614	7.3%	24.0%	2,101	2.042	10473	1723	13.9%	15.1%	3.011	2.9456	1906
9	0.018	0.014	6.4%	/5%	6.3	38.1	27869	10.76	929	1	163/	2020	4.6%	16.0%	2.7/3	2.398	15816	2032	13.2%	13.7%	4.303	3.0344	5777
	0.007	0.068	3.8%	56%	6.3	38.8	16078	11.00	536		2/1/	1000	10.0%	33.5%	1.873	1.8/3	5071	1254	12.0%	15.1%	1.8/1	1.8/14	1213
12	0.013	0.065	3.5%	46%	6.3	0.0	17937	11.00	598		2329	1281	9.0%	10.7%	1.784	1.499	11578	1061	8.7%	9 1%	2 322	0.6161	10420
13	0.034	0.025	4.2%	77%	6.3	35.0	15480	10.92	516	1	2100	1140	8.6%	26.7%	1.527	1.43	7225	1337	24.1%	24.4%	1.847	1.9447	-76
14	0.028	0.027	7.2%	60%	6.3	38.8	17251	11.36	575	1	1016	1264	7.7%	25.6%	1.637	1.626	8247	1399	16.3%	15.9%	2.497	1.0242	6765
15	0.033	0.016	8.0%	22%	6.3	31.5	12071	11.36	402	1	977	942	7.5%	28.7%	1.142	1.142	5360	620	4.5%	-0.7%	2.835	0.338	12977
16	0.038	0.041	3.3%	77%	6.3	0.0	15302	11.40	510	1	2074	1051	10.7%	12.7%	1.456	1.213	9431	1316	24.6%	24.5%	2.362	2.0301	1948
17	0.049	0.022	3.5%	50%	6.3	42.5	17327	11.40	578	1	2223	1341	10.8%	30.0%	1.635	1.635	7518	1435	8.7%	14.4%	1.854	1.1707	4503
10	0.010	0.038	2.970	67% 52%	6.3	42.5	17366	11.40	570		2210	1210	0.9%	27 0%	1,458	1.104	7856	1240	13.8%	13.0%	2./10	1.3118	6200
20	0.025	0.016	4.0%	77%	6.3	32.5	33520	11.69	1117	1	1619	2231	6.1%	14.4%	3.071	2.644	19618	2282	14.5%	18.4%	2,809	3.2357	-417
21	0.039	0.014	3.3%	75%	6.3	53.8	33912	11.27	1130	1	2272	2379	8.3%	21.0%	3.22	2.937	17623	3077	19.3%	25.2%	2.753	3.0362	-4719
22	0.032	0.013	4.2%	75%	6.3	26.9	27651	11.87	922	1	1688	1827	7.0%	15.4%	2.494	2.172	15882	1947	16.9%	18.3%	3.365	2.9275	3016
23	0.053	0.018	5.3%	65%	6.3	46.3	22862	11.31	762	1	1568	1716	11.2%	27.1%	2.168	2.168	10552	2177	17.6%	21.9%	2.366	2.3659	-1893
24	0.015	0.021	3.9%	75%	6.3	28.8	23234	11.43	774	1	1698	1584	4.8%	15.4%	2.184	1.884	13399	1038	12.5%	12.3%	3.027	1.4449	8233
25	0.048	0.034	1.1%	80%	6.3	53.8	23123	11.00	//1 509	1	1297	1/81	11.8%	29.5%	2.27	2.2/	10246	3887	39.6%	38.2%	3.311	3.3106	-6914
20	0.018	0.105	4.9%	46%	6.3	35.0	10070	11.00	336		2000	041	13.8%	43.6%	1.539	1.307	3121	1150	19.2%	18.9%	2.87	1.6030	4315
28	0.017	0.008	3.1%	77%	6.3	65.0	29408	11.00	980	1	1858	2124	3.8%	21.2%	2.854	2.643	15066	2200	10.3%	15.6%	3.32	3.5238	1360
29	0.031	0.019	4.6%	56%	6.3	61.3	25764	11.00	859	1	1417	1973	7.3%	25.7%	2.513	2.513	12196	1796	5.8%	10.5%	3.476	2.7175	4263
30	0.021	0.015	4.1%	70%	6.3	53.8	21654	11.90	722	1	1641	1498	5.2%	24.7%	1.949	1.914	10423	1500	11.3%	13.3%	2.79	0.9922	9277
31	0.030	0.012	3.4%	73%	6.3	57.5	28587	11.69	953	1	2474	1961	6.6%	22.4%	2.615	2.45	14387	2155	15.8%	17.5%	3.626	3.6346	1974
32	0.032	0.017	4.7%	56%	6.3	50.0	22320	11.31	744	1	1699	1642	7.3%	24.9%	2.116	2.107	10726	1558	10.8%	12.1%	2.922	2.6409	2488
33	0.023	0.051	4.4%	55%	6.3	7.0	14553	11.00	485	1	2280	1053	9.3%	14.9%	1.44	1.249	6767	925	11.2%	10.3%	3.084	1.3059	7206
34	0.039	0.023	4.4%	97%	6.3	40.3	20778	10.85	000 200		21/0	12/1	9.1%	2 4%	2.065	1.574	14563	1590	19.0%	10.3%	2.040	2.1024	402/
36	0.054	0.049	3.2%	50%	6.3	38.8	16470	10.97	549	'	2618	1342	13.4%	31.6%	1.626	1.626	7007	1040	11.5%	13.8%	1.749	1.7492	1450
37	0.008	0.072	3.0%	61%	6.3	0.0	18331	11.09	611		2483	1216	3.0%	3.9%	1.794	1.394	12647	901	5.2%	5.4%	2.068	0.5856	9949
38	0.023	0.037	3.3%	56%	6.3	38.8	24421	10.85	814	1	2496	1767	7.9%	20.6%	2.433	2.184	12979	1663	8.5%	13.4%	2.271	2.5207	211
39	0.016	0.061	2.5%	54%	6.3	0.0	16331	11.00	544	1	2768	1167	9.0%	10.8%	1.622	1.363	10485	928	8.6%	8.5%	3.034	1.2329	8019
40	0.032	0.038	2.7%	29%	6.3	42.5	16181	11.00	539	1	2819	1297	9.4%	29.7%	1.593	1.593	7142	1151	2.2%	8.3%	1.934	0.7786	6285
	0.031	0.031	4.4%	63%	6.3	32.9	19988	11.16	666	1.0	1960	1460	8.4%	21.8%	1.927	1.776	10417	1487	14.3%	15.2%	2.754	1.8495	4488

%change |50.5% 63.1% 41.1%

E-21

94.114

ł

APPENDIX F: AC TESTING PROCEDURE FORMS

AIR CONDITIONER TESTING PROCEDURE

Subdivision Name ______ General Contractor _____

Address _

_____ Date _____

AIR FLOW TEST PREPARATION

1.	Open ALL windows and doors in the house.
2.	Turn off all breakers except the main service disconnect, the air handler and the outdoor AC unit.
3.	Turn on the AC system at the thermostat to check if the breakers are marked correctly. If they are not, then determine the correct breakers and mark them. Leave all breakers turned off except those that are for the air handler and the outdoor AC unit. Turn the AC system off.

INSIDE UNIT FAMILIARIZATION & PREPARATION

4.	Non-TXV TXV	What type refrigerant metering device does the indoor coil have?
5.	Manf. Mod.	Record the manufacturer and model number of the indoor coil.
6.	Manf. Mod.	Record the manufacturer and model number of the air handler.
7.		Prepare thermocouples to measure wet bulb and dry bulb temperatures in both the return and supply plenums. Place the wet bulb thermocouples in water to ensure they are saturated when needed. Do not get the dry bulb thermocouples wet .
8.		Prepare thermocouples to measure dry bulb temperatures at three supply registers. Use the same registers chosen in the duct leakage test procedure.
9.		Prepare a thermocouple to measure dry bulb temperature at the return grille that is the furthest away from the air handler.
10.		Prepare a thermocouple to measure the attic temperature. Ensure that the thermocouple is at least 6" above the insulation. Make sure the thermocouple will sense the true attic temperature. Keep it away from the attic hatch if it is open.

© 1994 Proctor Engineering Group, All Rights Reserved

Page 1

Contact Proctor Engineering Group for reproduction authorization. All reproduction must carry this notification. This data can be rapidly analyzed by computer programs available from:

Proctor Engineering Group @ 818 Fifth Ave, Suite 208, San Rafael, CA. 94901 (415) 455-5700

94.114

OUTSIDE UNIT FAMILIARIZATION & PREPARATION

11.	Yes No	Is the outdoor unit installed in a location that will cause air to recirculate through the coil?
12.	lbs. oz. ft. L Line dia. S Line dia.	Record the factory nameplate rated refrigerant charge for the system and the measured line set length and liquid line diameter and suction line diameter.
13.		Install thermocouples to read the temperature of the air into the outdoor unit (3" away from the coil) and to read the temperature of the air out of the outdoor unit (3 to 6" from the top of the fan).
14.		 Install thermocouples to measure temperatures at the following locations: On the suction line just before it enters the outside cabinet (for package units 6 to 8 inches from the compressor). On the liquid line just as it leaves the outside cabinet (for package units 6 to 8 inches from the outside coil). On the hot gas discharge line 6 to 8 inches from the compressor. Be sure all thermocouple measurement points are insulated and all cabinet panels that effect air flow are back in place.
15.		Install your ammeter to measure the amperage to the compressor at the outdoor unit (use the common leg for this measurement).
16.	Manf. Mod.	Record the manufacturer and model number from the outdoor unit nameplate.
17.	Fan FLA Comp. RLA Volts	Record the rated FLA of the outdoor unit fan motor, the RLA of the compressor and the rated voltage from the outdoor unit nameplate.

AIR FLOW AND CHARGE TESTS - PREPARATION

18.	Set thermostat at coolest setting and start your stop watch to measure time when compressor starts.
19.	Check the amps at the compressor, and access the system with your gages. At ten minutes install the thermocouple set up in the return plenum.
20.	At fifteen minutes measure and record all of the information needed to complete step # 21.

© 1994 Proctor Engineering Group, All Rights Reserved

Page 2

Contact Proctor Engineering Group for reproduction authorization. All reproduction must carry this notification. This data can be rapidly analyzed by computer programs available from:

Proctor Engineering Group @ 818 Fifth Ave, Suite 208, San Rafael, CA. 94901 (415) 455-5700

94.114

AIR FLOW AND CHARGE TESTS

#4

21.		_ Reading
		_ Reading
		_ Reading
		Reading
	A	Totaľ

#1 Measure every return grille with the flow hood and record the
#2 results. DIVIDE THE GRILLES AND TAKE AT LEAST TWO
#3 READINGS AT EACH GRILLE.

A Total	
22. Record:	
TIME & TEMPERATURE	CONDENSER
Elapsed time	Condenser Pressure
Return wet bulb	Saturation temp.
Return dry bulb	- Liquid line temp.
Outdoor coil entering dry bulb	= Subcooling
- Outdoor coil exiting dry bulb	EVAPORATOR
= Outdoor coil ΔT	Evaporator Pressure
COMPRESSOR	Suction line temp.
Compressor amps.	- Evap saturation temp.
Compressor volts.	= Superheat
Hot gas discharge temp	Target Superheat

COOLING EFFICIENCY TEST

23.	°F Attic	While waiting, measure and record the attic temperature.
24.	Minutes	Remove the return wet bulb thermocouple and wet the wick again. Install thermocouple set ups in both the supply and return plenums. Record the time elapsed since the beginning of the test.
25.	B Sup WB. C Sup DB. D Ret WB. E Ret DB.	Allow thermocouple temperatures to stabilize and record: The supply and return wet bulb and dry bulb temperatures. Temperatures are stabilized when they do not change during the course of three cycles of the digital thermometer.
26.	Near Reg. Mid Reg. Far Reg.	Measure and record the three supply dry bulb temperatures at the supply registers.
27.	Ret. Grille	Record the return dry bulb temperature at the return grille.
28.	F Meter Kh G # of rev H Seconds	Measure the watts from the house meter by counting the number of revolutions of the disc. Clock for at least 90 seconds.

© 1994 Proctor Engineering Group, All Rights Reserved

Page 3

Contact Proctor Engineering Group for reproduction authorization. All reproduction must carry this notification. This data can be rapidly analyzed by computer programs available from:

Proctor Engineering Group @ 818 Fifth Ave, Suite 208, San Rafael, CA. 94901 (415) 455-5700

ENERGY EFFICIENCY RATIO

CAPACITY ÷

 (H_{T2})

<u>CO</u>	OLING EFFICIENCY	TEST	(Cont).		
29.	F° Outdoors	Record t	he temperature of th DO NOT SH	ne air entering the outdoor coil. IUT THE AC SYSTEM OFF	
SEN	ISIBLE AND LATEN	T CAPA	CITY		
30.					
	SENSIBLE CAPACIT	TY (H _S)			
	(E) Ret dry h	oulb - (C	:) Sup dry bu	ılb = Temp. Split	
	(A) CFM X		Temp. Split X 1.08	= (H_S) Btu/hr.	
ŝ	LATENT CAPACITY	((H L)			
	(D) Return v	wet (E)_	dry	Return Grains/lb (from chart)	
	(B) Supply v	vet (C)	dry	Supply Grains/lb (from chart)	
			=	Change in Grains per lb	
	(A) CFM X		Change in Grains X	$.68 = (H_L)$ Btu/hr.	
	CHECK CALCULAT	ION			
	(H _L)	+	$(H_{S}) =$	(H _{T1})	
TO	TAL CAPACITY				
TO 31.	ΓΑΙ CAPACITY				
TO 31.	TAL CAPACITY ENTHALPY CHANC	GE			
TO 31.	TAL CAPACITY ENTHALPY CHANC (D) Return v	GE vet bulb		Return Enthalpy (from table)	
TO 31.	TAL CAPACITY ENTHALPY CHANC (D) Return v (B) Supply w	GE vet bulb zet bulb		Return Enthalpy (from table) Supply Enthalpy (from table)	
TO 31.	TAL CAPACITY ENTHALPY CHANC (D) Return v (B) Supply w	GE vet bulb vet bulb		Return Enthalpy (from table) Supply Enthalpy (from table) Change in Enthalpy	
TO 31.	TAL CAPACITY ENTHALPY CHANC (D) Return v (B) Supply w TOTAL CAPACITY (GE vet bulb 7et bulb (H_{T2})		Return Enthalpy (from table) Supply Enthalpy (from table) Change in Enthalpy	
TO ⁷ 31.	TAL CAPACITY ENTHALPY CHANC (D) Return v (B) Supply w TOTAL CAPACITY ((A) CFM X	GE vet bulb vet bulb (H _{T2})	 = Change in Enthalpy	Return Enthalpy (from table) Supply Enthalpy (from table) Change in Enthalpy X 4.5 = (H_{T2}) Btu/hr.	
TO	TAL CAPACITY ENTHALPY CHANC (D) Return v (B) Supply w TOTAL CAPACITY ((A) CFM X If H _{T1} is not within 1	GE vet bulb vet bulb (HT2)	 = Change in Enthalpy 12 the Final Cooling	Return Enthalpy (from table) Supply Enthalpy (from table) Change in Enthalpy X 4.5 = (H_{T2}) Btu/hr. Efficiency test must be redone.	
<u>TO</u> 31. INP	TAL CAPACITY ENTHALPY CHANC (\mathbf{D}) Return v (\mathbf{B}) Supply w TOTAL CAPACITY ((\mathbf{A}) CFM X If \mathbf{H}_{T1} is not within 1 PUT AND EER	GE vet bulb vet bulb (H _{T2}) 	 = Change in Enthalpy r2 the Final Cooling	Return Enthalpy (from table) Supply Enthalpy (from table) Change in Enthalpy X 4.5 = (H_{T2}) Btu/hr. Efficiency test must be redone.	
TO 31. INP 32.	TAL CAPACITY ENTHALPY CHANC (D) Return v (B) Supply w TOTAL CAPACITY ((A) CFM X If H _{T1} is not within 1 UT AND EER	GE vet bulb vet bulb (HT2)	 = Change in Enthalpy r2 the Final Cooling	Return Enthalpy (from table) Supply Enthalpy (from table) Change in Enthalpy X 4.5 = (H_{T2}) Btu/hr. Efficiency test must be redone.	
TO 31. INP 32.	TAL CAPACITY ENTHALPY CHANC (D) Return v (B) Supply w TOTAL CAPACITY ((A) CFM X If H _{T1} is not within 1 PUT AND EER ACTUAL INPUT	GE vet bulb vet bulb (HT2) 	 = Change in Enthalpy r2 the Final Cooling	Return Enthalpy (from table) Supply Enthalpy (from table) Change in Enthalpy $X 4.5 = (H_{T2})$ Btu/hr. Efficiency test must be redone.	

© 1994 Proctor Engineering Group, All Rights Reserved Page 4 Contact Proctor Engineering Group for reproduction authorization. All reproduction must carry this notification. This data can be rapidly analyzed by computer programs available from: Proctor Engineering Group @ 818 Fifth Ave, Suite 208, San Rafael, CA. 94901 (415) 455-5700

INPUT =

EER

CAPACITY CHECK AND RETEST

33.		If the total OR sensible cooling capacity measured in step # 30 is not within 10% of the total capacity measured in step # 31, steps # 34 thru 42 MUST be completed. If the capacities came out within 10% of each other skip to step # 43.
34.	Minutes	Remove the return wet bulb thermocouple and wet the wick again. Install thermocouple set ups in both the supply and return plenums. Record the time elapsed since the beginning of the test.
35.	B Sup WB. C Sup DB. D Ret WB. E Ret DB.	Allow thermocouple temperatures to stabilize and record: The supply and return wet bulb and dry bulb temperatures. Temperatures are stabilized when they do not change during the course of three cycles of the digital thermometer.
36.	Near Reg. Mid Reg. Far Reg.	Measure and record the three supply dry bulb temperatures at the supply registers.
37.	Ret. Grille	Measure and record the return dry bulb temperature at the return grille.
38.	F Meter Kh G # of rev H Seconds	Turn off ALL breakers except those to the air conditioner and the air handler. Measure the watts from the house meter by counting the number of revolutions of the disc. Clock for at least 90 seconds. WHEN DONE WITH TEST TURN ALL BREAKERS BACK ON.
39.	F° Outdoors	Record the temperature of the air entering the outdoor coil.

94.114

SENSIBLE AND LATENT CAPACITY				
40.				
SENSIBLE	E CAPACITY (H _S)			
(E)	_ Ret dry bulb - (C)) Sup dry bulb	= Temp. Split	
(A)	CFM X	Temp. Split X $1.08 =$	(H _S) Btu/hr.	
LATENT	CAPACITY (H _L)			
(D)	Return wet (E)	dry	Return Grains/lb (from chart)	
(B)	_ Supply wet (C)	dry	Supply Grains/lb (from chart)	
		=	Change in Grains per lb	
(A)	CFM X (Change in Grains X .68	$B = (H_L)$ Btu/hr.	
CHECK C	ALCULATION			
	(H _L) +	(H _S) =	(H _{T1})	
TOTAL CAPA				

~ ~ .			
41.			
	ENTHALPY CHANGE		
	(D) Return wet	bulb	Return Enthalpy (from table)
	(B) Supply wet h	oulb	Supply Enthalpy (from table)
		=	Change in Enthalpy
	TOTAL CAPACITY (H _T	2)	
	(A) CFM X	Change in Enthalpy	X 4.5 = (H_{T2}) Btu/hr.
	If H_{T1} is not within 10%	of H_{T2} the Final Cooling	Efficiency test must be redone.

INPUT AND EER

42.	
	ACTUAL INPUT
	(F) (Kh X (G) # of Revs. X 3600) \div (H) seconds = INPUT (Watts)
	ENERGY EFFICIENCY RATIO
	(H_{T2}) CAPACITY ÷ INPUT = EER

© 1994 Proctor Engineering Group, All Rights Reserved Page 6 Contact Proctor Engineering Group for reproduction authorization. All reproduction must carry this notification. This data can be rapidly analyzed by computer programs available from: Proctor Engineering Group @ 818 Fifth Ave, Suite 208, San Rafael, CA. 94901 (415) 455-5700

SUPPLY SIDE AIR FLOW TEST

43.		Start at t Follow th Record t provided	he front door of ne same circuit he register flow l below. Use op	f the house and used during the measured with pen flaps measu	move to the rig duct leakage te the flow hood rement with the	ht (clockwise). st procedure. in the spaces e flow hood.
Register Flow	1		2	3	4	5
Register Flow	6		7	8	9	10
Register Flow 11			12	13	14	15
Register Flow	16		17	18	19	20
44.		Set the tl leakage t	nermostat back test procedure.	to it's original s	etting recorded	in the duct
45.		Turn off power to the outdoor unit, remove all test equipment at the outdoor unit and restore power to the outdoor unit.				
46.		Remove all test equipment from the indoor unit and the registers.				
47.		Turn all breakers back on for the house and test the operation of the AC system.				

COMMENTS

© 1994 Proctor Engineering Group, All Rights Reserved Page 7 Contact Proctor Engineering Group for reproduction authorization. All reproduction must carry this notification. This data can be rapidly analyzed by computer programs available from: Proctor Engineering Group @ 818 Fifth Ave, Suite 208, San Rafael, CA. 94901 (415) 455-5700

APPENDIX G: DUCT TESTING PROCEDURE FORMS

DUCT TESTING PROCEDURE

Subdivision Name		_ General Contractor		
Address		City	_	
Plan Type	Technician	Date	_	

1.	° F	Record the current thermostat setting.
	Cool Off	
2.		Drill holes to measure pressures in both the supply and return plenums. THIS MUST BE SOMEWHAT DISTANT FROM THE COIL AS WELL AS WHERE THE AIR IS THOROUGHLY MIXED AND HAS GOOD VELOCITY. Install and secure the static pressure probes (with tubing into house) for pressure measurements.
3.		Turn on the air handler fan only (not the AC) at the thermostat fan switch. Wait 10 minutes before measuring pressures if AC was on when you arrived.
4.	DRY COIL S. Plenum R. Plenum	Measure the pressures in the return and supply plenums and in the supply system. Use low range and long term averaging on the digital manometer for this measurement.
5.		Turn off the air handler fan and turn on the air conditioner at the thermostat.
6.		 Starting at the front door and moving to the right (clockwise), prepare for tests by: Closing all exterior windows and doors and fireplace dampers. Opening all interior room doors. Record the register locations in step # 9 of this form. OPEN ALL SUPPLY REGISTERS NOW.
7.	House ΔP	Once the blower door is set up, perform the house pressure imbalance test by measuring the ΔP in the house WRT outdoors.
8.	Return ΔP House ΔP	Block all return grilles with plastic or tape and measure the pressure across the return grille WRT the house. Then measure the house pressure imbalance measuring the ΔP in the house WRT outdoors.
9.	WET COIL S. Plenum R. Plenum	After the air conditioner has run for at least fifteen minutes, measure the pressures in the return plenum and in the supply system. Use low range and long term averaging on the digital manometer for this measurement. <u>TURN THE AIR CONDITIONER OFF.</u>

10.		Remove all HVAC system filters.				
11. SHELL LEAKAGE House Pressure Fan Pressure True Fan Flow Corr. Fan Flow Open A B Flow Ring		As soon as the blower door gauges are zeroed, T 2 will pressurize the house to 50 pascals. Record the house pressure, fan pressure, fan flow and flow ring configuration. If you are not able to pressurize the house to 50 pa. use the correction factors on the blower door fan control to determine the corrected fan flow. T2 MAINTAINS PRESSURE AT THE BLOWER DOOR.				
12.		Starti (clock provi	Starting at the front door of the house and moving to the right clockwise). Record the pressure pan measurements in the spaces provided below.			
Register Location	1		2	3	4	5
Pressure Pan ΔP						
Register Location	6		7	8	9	10
Pressure Pan ΔP						
Register Location	11		12	13	14	15
Pressure Pan ΔP						
Register Location	16		17	18	19	20
Pressure Pan ΔP						
13.		While T 2 installs the Duct Blaster at a return grille, cover all registers with paper and/or masking tape.				
14. PRESS TAP LOCATION Bas Register # reg air sys the		Based on the leakage indications of the pressure pan test and register proximity, pick a supply register that is located close to the air handler and not excessively leaky for the location of the supply system pressure tap (pressure pan reading should be < 1 PA.). Use the 50' blue tube for the duct reference pressure.				
15. TOTAL LEAKAGE Present the Bla start of the Bla streem DUCT BLASTER™ che start of the Bla streem S. Duct Pres. sup corr Fan Pressure for the Bla streem S. Duct Pres. sup corr True Fan Flow If the to be t		Presso Blaste check suppl config If the to hig to adj	urize the duct synthesis \mathbf{F}^{TM} . As soon as \mathbf{F}^{TM} , As soon as \mathbf{F}^{TM} , and \mathbf{F}^{TM} duct pressure, guration. ducts can not by hest duct pressure the Duct Black	ystem to 25 pa the supply is a <u>seal to ensure</u> , fan pressure, f e pressurized to ure possible. U aster [™] fan flow	(WRT outside) v it 25 pa (WRT ou <u>an air tight sea</u> an flow, and flo o 25 pa (WRT ou se the correction to 25 pa.	vith the Duct utside), <u>T 2 will</u> <u>I</u> . Record the w ring utside), adjust a factors table

16. DUCT PRESSURES	With the ducts still pressurized to 25 pa. measure the pressures in the supply and return plenums WRT outside. Also measure the pressures in three supply registers. Choose the supply register closest to the air handler, the supply register furthest away from the air handler and a supply register that is located half way between the other two supply registers chosen. Record the corresponding number from step # 10 with the registers chosen. Once all measurements have been made turn off the Duct BlasterTM.
 17. OUTSIDE LEAKAGE DUCT BLASTER™ S. Duct Pres. Fan Pressure True Fan Flow Corr. Fan Flow 0 1 2 3 Flow Ring 	Pressurize the house to 25 pa (WRT outside) with the blower door and duct system to 25 pa (WRT outside) with the Duct Blaster [™] . As soon as both the supply and the house are at 25 pa (WRT outside), T 2 will check every register seal to ensure an air tight seal . Record the supply duct pressure, fan pressure, fan flow, and flow ring configuration. If the ducts can not be pressurized to 25 pa (WRT outside), adjust to highest duct pressure possible and adjust blower door to bring house pressure to zero differential (WRT) ducts. Use the correction factors table to adjust the Duct Blaster [™] fan flow to 25 pa.
18. SUPPLY SYSTEM DUCT PRESSURES	With the house and ducts still pressurized to 25 pa. measure the pressure in the supply and return plenums WRT outside and the pressures in the same supply registers selected in step # 13.
19. HALF NELSON S. Pressure R. Pressure	Once the duct leakage tests are completed cover the opening of the Duct Blaster [™] . Perform the Half Nelson by turning on the fan switch at the thermostat. Record the return and supply plenum pressures. <u>Do not leave the fan on any longer than necessary</u> . Once test is completed uncover the Duct Blaster [™] fan opening and turn off fan at the thermostat. ALL REGISTERS SHOULD STILL BE COVERED .
20. ΔP to Attic ΔP to Floors	Measure and record the ΔP from the house to the attic and if this is a two story house measure the ΔP to the space between the floors. Once all measurements have been made turn off the Duct Blaster TM and blower door.

Test Pressure	Correction Factor	Test Pressure	Correction Factor	
5	2.42	15	1.32	
7	7 2.01 17		1.24	
9	1.75	19	1.16	
11	1.57	21	1.10	
13	1.43	23	1.05	
21.	With T 2's assistant in the comments se	ce, visually inspect the d ection any problems that	uct system and record are seen.	
22.	Reinstall all the s from registers and Blaster TM to the air procedure.	ystem filters. Upon com pack up the blower door handler and complete th	npletion remove tape . Take the Duct he AC testing	

COMMENTS

DUCT TESTING PROCEDURE

Address _____ Technician _____

1.	Unload all tools needed to complete testing on the house. This includes Duct Blaster [™] , blower door, masking gun and tape, etc
2.	Put down drop cloths (if necessary) and set up the blower door. Attach the 50' green tube to the tube on the top blower door gauge.
3.	As soon as T 1 has the house closed up for testing, zero the blower door gauges (with fan cover in place).
4.	Assist T 1 in performing the house pressure imbalance tests.
5.	Pressurize the house to 50 pa. and report the pressure and flow readings to T 1. Keep the house pressure at 50 pa. while T 1 does the pressure pan testing.
6.	Install the Duct Blaster [™] at the return closest to the air handler. The return selected should not be excessively leaky.
7.	Once all of the registers have been covered, assist T 1 in performing the total system duct leakage test by <u>checking every</u> register covering to ensure an air tight seal.
8.	During the duct leakage to outside test, the house should be maintained at 25 pa. (WRT outside). If the duct system can not be pressurized to 25 pa. adjust the blower door to achieve zero pressure differential in the house (WRT) ducts.
9.	Assist T 1 in performing the half nelson test by controlling the thermostat.
10.	While T 1 reinstalls the filter, remove tape from registers and pack up the blower door. Once finished, gather the Manual J data.

APPENDIX H: MANUAL J FORMS

HEAT GAIN CALCULATION PROCEDURE 94.114

Subdivision Name ______ General Contractor _____

Address ______ <u>3</u> City ______

7.

9.

8.

Ft

Ft²

 Technician
 174
 Date

Is the outside unit shaded during the afternoon? 1. Yes No 4 2. CFM Record the shell leakage of the house 5 3. Record the duct location by percentage for total system(s). Supply Ducts Insulated? **Return Ducts** Insulated? Duct Location by % 6 8 0 2 4 6 0 2 4 6 7 9 Attic Space 10 0 2 4 6 11 12 0 2 4 6 13 Crawl Space 14 0 2 4 6 15 16 0 2 4 6 17 In Slab 18 0 2 4 6 19 20 0 2 4 6 21 In Walls or Between Floors 22 0 2 4 6 23 0 2 4 6 24 25 In Exterior Walls 26 0 2 4 6 28 0 2 4 6 27 29 Garage 30 0 2 4 6 31 32 0 2 4 6 33 Hall Platform 34 0 2 4 6 35 36 0 2 4 6 37 Garage Platform Bedrooms 38 Record the number of bedrooms in the house. 4. Record the square footage of the living space in the house on all _____ 1st Floor 5. 39 levels. _____ 2nd Floor 40 3rd Floor 41 Total 42 Ft² 6. ⁴³ Record the square footage of the ceiling area exposed to the attic.

space or unconditioned basement). Ft² Carpet 46 Record the total raised floor area of the house that is covered by carpeting and the area that is covered by other materials Ft² Other 47 (hardwood, tile, etc...)

45 Record the total raised floor area of the house (area over crawl

44 Record the average ceiling height.

94.114

10.		Ft ²	48	Record the total slab on grade area of the house.
11.		_ Ft ² Carpet _ Ft ² Other	49 50	Record the total slab on grade floor area of the house that is covered by carpeting and the area that is covered by other materials (hardwood, tile, etc)
12.	Yes	No Inches	51	Are the exterior wall cavities insulated?. If yes, record the exterior wall cavity depth.
13.	Yes	No R-value	52 53	Is the raised floor area of the house insulated? If yes, record the R-value.
14.	Yes	No R-value	54 55	Is the attic of the house insulated? If yes, record the R-value. Use the following R-values for each inch of insulation. Blown fiberglass = $R-2.2$ Batt fiberglass = $R-3.2$ Blown cellulose = $R-3.5$ Blown rockwool = $R-2.2$
15.	Yes	No	56	Based on visual inspection, does the attic ventilation appear to be adequate? (1 Ft ² of free vent area for every 300 Ft ² of attic area).
16.	Ligh Darl	it K	57 57	Record the roofing material color.
17.	Compo Woo Woo	osition od od	58 58 58	Record the roofing material type.
18.		Stories	59	Record the building height in number of stories.
19.		_CFM	60	Record the measured duct leakage to outside for both the supply and return duct systems.

COMMENTS 175

÷

94.114		LEVEL 1		
Glazing type:	Single pa	ne Double pane	Triple pane 67	
Orientation N NE	65		Orientation E SE	
Length of Wall (LF)	68		Length of Wall (LF)	76
Total Exposed Wall Area (Ft ²)	69		Total Exposed Wall Area (Ft ²)	77
Door Area (Ft ²)	70		Door Area (Ft ²)	78
Door Code	71		Door Code	79
Glass Door Area (Ft ²)	72		Glass Door Area (Ft ²)	80
Glass Door Code	73	Draw House Plan Label The Front	Glass Door Code	81
Winow Glazing Area (Ft ²)	74		Winow Glazing Area (Ft ²)	82
Glazing Code	75		Glazing Code	83
	W		S	
Orientation W NW			Orientation S SW	
Length of Wall (LF)	84		Length of Wall (LF)	93
Total Exposed Wall Area (Ft ²)	85		Total Exposed Wall Area (Ft ²)	94
Door Area (Ft ²)	86		Door Area (Ft ²)	95
Door Code	87		Door Code	96
Glass Door Area (Ft ²)	88		Glass Door Area (Ft ²)	97
Glass Door Code	89		Glass Door Code	98
Winow Glazing Area (Ft ²)	90		Winow Glazing Area (Ft ²)	99
Glazing Code	91		Glazing Code	100
% of Shading @ 4:00 PM	92		% of Shading @ 4:00 PM	101

Door Codes:

- 1 Wood without storm door
- 2 Wood with storm door
- 3 Metal without storm door
- 4 Metal with storm door

Glazing Codes:

- 1 No shading
- 2 External shade screens 5 Tinted glass
- 3 Internal shading
- 4 Reflective film
- - 6 Other external shading

<u>94.114</u>		LEVEL 2	<u>2014/2014/0001</u> 0000000000000000000000000000000	
Glazing type:	Single pane	Double pane	Triple pane 103	
Orientation N NE			Orientation E SE	
Length of Wall (LF)	104		Length of Wall (LF)	112
Total Exposed Wall Area (Ft ²)	105		Total Exposed Wall Area (Ft ²)	113
Door Area (Ft ²)	106		Door Area (Ft ²)	114
Door Code	107		Door Code	115
Glass Door Area (Ft ²)	108		Glass Door Area (Ft ²)	116
Glass Door Code	109	Draw House Plan	Glass Door Code	117
Winow Glazing Area (Ft ²)	110 D		Winow Glazing Area (Ft ²)	118
Glazing Code	111	aber me From	Glazing Code	119
	w		S	
Orientation W NW			Orientation S SW	
Length of Wall (LF)	120		Length of Wall (LF)	129
Total Exposed Wall Area (Ft ²)	121		Total Exposed Wall Area (Ft ²)	130
Door Area (Ft ²)	122		Door Area (Ft ²)	131
Door Code	123		Door Code	132
Glass Door Area (Ft ²)	124		Glass Door Area (Ft ²)	133
Glass Door Code	125		Glass Door Code	134
Winow Glazing Area (Ft ²)	126		Winow Glazing Area (Ft ²)	135
Glazing Code	127		Glazing Code	136
% of Shading @ 4:00 PM	128		% of Shading @ 4:00 PM	137

Door Codes:

- 1 Wood without storm door
- 2 Wood with storm door
- 3 Metal without storm door
- 4 Metal with storm door

Glazing Codes:

- 1 No shading
- 2 External shade screens 5 Tinted glass
- 3 Internal shading
- 4 Reflective film
- 6 Other external shading

		LEVEL 3		
Glazing type:	Single pa	ane Double pane	Triple pane 139	
Orientation N NE			Orientation E SE	
Length of Wall (LF)	140		Length of Wall (LF)	148
Total Exposed Wall Area (Ft ²)	141		Total Exposed Wall Area (Ft ²)	149
Door Area (Ft ²)	142		Door Area (Ft ²)	150
Door Code	143		Door Code	151
Glass Door Area (Ft ²)	144	Draw House Plan Label The Front	Glass Door Area (Ft ²)	152
Glass Door Code	145		Glass Door Code	153
Winow Glazing Area (Ft ²)	146		Winow Glazing Area (Ft ²)	154
Glazing Code	147		Glazing Code	155
	W		S	
Orientation W NW			Orientation S SW	
Length of Wall (LF)	156		Length of Wall (LF)	165
Total Exposed Wall Area (Ft ²)	157		Total Exposed Wall Area (Ft ²)	166
Door Area (Ft ²)	158		Door Area (Ft ²)	167
Door Code	159		Door Code	168
Glass Door Area (Ft ²)	160		Glass Door Area (Ft ²)	169
Glass Door Code	161		Glass Door Code	170
Winow Glazing Area (Ft ²)	162		Winow Glazing Area (Ft ²)	171
Glazing Code	163		Glazing Code	172
% of Shading @ 4:00 PM	164		% of Shading @ 4:00 PM	173

Door Codes:

- 1 Wood without storm door
- 2 Wood with storm door
- 3 Metal without storm door
- 4 Metal with storm door

Glazing Codes:

- 1 No shading
- 2 External shade screens 5 Tinted glass
- 3 Internal shading
- 4 Reflective film
- - 6 Other external shading